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Applications of Linear Matroid Parity

e Maximum Forests in 3-Uniform Hypergraphs
 Maximum Disjoint S-paths

* Minimum Pinning-Down Points
to Make Planar Structures Rigid

 Minimum Feedback Vertex Sets in (Sub)Cubic Graphs

 Maximum-Genus Embedding of Graphs

etc.
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Analogy in Weighted Situations?

[ Some Problem ] [ Linear Matroid Parity]

Unweighted Polytime €&——— Polytime
T via
(Carc\zlllenrallty) Reduction
| |
: Polytime?? \ ------ Polytime
We\llgefrlted Y < 229 b4

‘ (Also Announced by )
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Outline

 Preliminaries

* Disjoint S-paths
— Background
— Extension Trick

* Feedback Vertex Sets in (Sub)Cubic Graphs

— Background
— Extension Trick

 Conclusion
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Outline

* Preliminaries (What is Difficult?)
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Linear Matroid Parity Problem

Given Z € F"*?™: Matrix with Lines (Pairing of Columns)

Fin Maximum Number of Linearly Independent Lines

1 00000 0 O 1 0 00 0 0l0 0
0100000 0 0100 0 o0lo o
0010000 0 00100 o0lo o
000100 0 o Column fr o1 0 olo o
0000100 2| FUlRank|o o 0 0 1 ol 0 2
0000010 1 00000 1]0 1
000000 1 1 00000 o0f1 0
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Weighted Linear Matroid Parity Problem

Given Z € F"*?™: Matrix with Lines (Pairing of Columns)
w:[m] - R Weight on Lines

Find Parity Base of Minimum Weight

\\
Line Subset consistng of a Basis

0 0|0 O II 1 0 0 0 0 0 0 O
0 0/0 O 0 1.0 0 0 00 O
o ofo of Nom- 10 0 1 0 0 0/ 0 0
0o o|lo o] singular o 0 0 1 0 0 0 ©
1 0|0 2 0 00 0 1 0 0 2
0 111 1 0 0 0 0 0 1 1 1d
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Reduction Sketch (Unweighted Case)

Reduce
[ Some Problem ] — [ Linear Matroid Parity]

Original E
Instance
Construct | =~ =~ =
! Solve &Solve
v

p- Column
Full Rank
Reconstruct

| m— m— m— W
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Reduction Sketch (Unweighted Case)

Reduce
[ Some Problem ] — { Linear Matroid Parity]

Original 3
Instance
Construct L = = =
What
We [ Optimal = Max. Cardinality ]
Need

p- Column
Full Rank
Reconstruct

| m— m— m— B
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General Difficulty

e Solution Correspondence may NOT be One-to-One

Original -—
Problem 5,4 / O L.M.P.
pt.
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General Difficulty

e Solution Correspondence may NOT be One-to-One

* Weights of Solutions may NOT be Preserved

woe?;iqt O s > (O

Original LM P
Problem Q (/07 OOpt
— OWEIght

Worg # WLMP
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Outline

* Disjoint S-paths
— Background
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Overview on Cardinality Maximization

[ Disjoint S-paths ] Solved via L.M.P.

mt Disjoint Non-bipartite
s—t Paths Matching

~N

[Bipartite Matching] %
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Overview on Cost Minimization

mt Disjoint Non-bipartite
s—t Paths Matching

Min-Cost Flow \ /I Weighted Matching

(Integral)
Assignment Problem [Bipartite Matching] %
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Overview on Cost Minimization

Solved via

D S-path
sioint S-paths | Weighted L.M.P.

mt Disjoint Non-bipartite
s—t Paths Matching

Min-Cost Flow \ /I Weighted Matching

(Integral)
Assignment Problem [Bipartite Matching] %
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A-paths and &-paths

G = (V,E): Undirected Graph
A € V:Terminal Set

A-paths
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A-paths and &-paths

G = (V,E): Undirected Graph
A € V: Terminal Set
S ={A{,A,,...,A;}: Partition of A

S-paths O€EA
A, ° ¢4 A,
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Disjoint &-paths Problem

Given G = (V,E): Undirected Graph
A € V:Terminal Set, §: Partition of A

Find Maximum Number of Vertex-Disjoint &-paths
/\

including Terminals

7 L




0o0|ooo0o0|o0000O@00iI00000|00000I000O0]O

Shortest Disjoint &-paths Problem

Given G = (V,E): Undirected Graph
A € V:Terminal Set, §: Partition of A
£:E - R,y Edge Length, k € Z-,

Totally Shortest k Vertex-Disjoint S-paths

EX.

4
k

2+2=4<
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Disjoint -paths — Linear Matroid Parity

Reduce
[ Disjoint S-paths] ——— [ Linear Matroid Parity ]

—>

Construct | =~ =~ |
! Solve &Solve
v

& Column
Full Rank

Reconstruct
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Disjoint &-paths — Linear Matroid Parity

~ A
Thm. V(G = (V,E),A4,S), 3 L.M.P. Instance s.t.

* The Line set is the Edge set E

e F € E is Feasible if and only if
— the Subgraph G|[F] is a Forest, and
s each tree has at most one A-path, which is an S-path

Column
Full Rank

| m— m— m— W
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Disjoint &-paths — Linear Matroid Parity

~ A
Thm. V(G = (V,E),A,S), 3 LM.P. Instance s.t.

* The Line set is the Edge set E

e F € E is Feasible if and only if
— the Subgraph G|[F] is a Forest, and
— each tree has at most one A-path, which is an S-path)

Max. #(This Type) <<  Max. Card.

Column
= Full Rank

| m— m— m— W
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Disjoint &-paths — Linear Matroid Parity

~ A
Thm. V(G = (V,E),A,S), 3 LM.P. Instance s.t.

* The Line set is the Edge set E

e F € E is Feasible if and only if
— the Subgraph G|[F] is a Forest, and
— each tree has at most one A-path, which is an S-path

Total Length of §-paths & Dotted Edges = Weight

Column
Full Rank

| m— m— m— B
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Outline

* Disjoint S-paths

— Extension Trick (Constructing Auxiliary Instance)
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Construction of Auxiliary Graph

V\ A

IO
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Construction of Auxiliary Graph

* |A| — 2k Extra Terminals to Rescue Unused Terminals
(Because we want to Find k Vertex-Disjoint S-paths)

V\ A
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Construction of Auxiliary Graph

* |A| — 2k Extra Terminals to Rescue Unused Terminals
(Because we want to Find k Vertex-Disjoint S-paths)

* An Extra $-path to Rescue Unused Non-terminals
(ALL Extra Edges are of Length 0)

V\ A
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Construction of Auxiliary Graph

* |A| — 2k Extra Terminals to Rescue Unused Terminals
(Because we want to Find k Vertex-Disjoint S-paths)

* An Extra §-path to Rescue Unused Non-terminals
(ALL Extra Edges are of Length 0)

V\ A
O— — Non-
singular
I

Min. Weight

A
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Construction of Auxiliary Graph

* |A| — 2k Extra Terminals to Rescue Unused Terminals
(Because we want to Find k Vertex-Disjoint S-paths)

* An Extra §-path to Rescue Unused Non-terminals
(ALL Extra Edges are of Length 0)

— .Non-
“ singular
I

Min. Weight

Min. Total Length
of S-paths
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Summary on Disjoint &-paths

Constructing Auxiliary Instance
(by Adding Weight-0 Elements)

* Shortest Disjoint 5-paths Problem
is solved in Polytime via Weighted L.M.P.

* This result can be extended to
Packing Non-zero A-paths in Group-Labeled Graphs
under some Group Representability Condition
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Outline

* Feedback Vertex Sets in (Sub)Cubic Graphs
— Background
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Feedback Vertex Set Problem

Given G = (V,E): Undirected Graph

Find Feedback Vertex Set of Minimum Cardinality
A

XCV st. G— XisaForest
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Minimum-Weight FV.S. Problem

Given G = (V,E): Undirected Graph
w:V = R,, Weight on Vertices

Find Feedback Vertex Set of Minimum Weight

Ex. w = d; (Degree of Vertices)

3+3+4=10<
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Minimum-Weight FV.S. Problem

Given G = (V,E): Undirected Graph, w:V — R,
Find Feedback Vertex Set of Minimum Weight

 NP-Hard even when
- w =1 (Unweighted), and
— G isPlanar withd; < 4

* Polytime via L.M.P. whenw = 1 and d; < 3 (Subcubic)

* Polytime 2-Approximation in General
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FV.S. in (Sub)Cubic Graphs — L.M.P.

dr- =3
- 4 Reduce
[ F.V.S. in Cubic Graphs J — { Linear Matroid Parity ]

—>

Construct |

¢ Solve
—— Column

Full Rank
Reconstruct
| m— ) —  —
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FV.S. in (Sub)Cubic Graphs — L.M.P.

4 . )
Thm. VG = (V,E): Cubic, 3 L.M.P. Instance s.t.
* The Line set is the Vertex set V
 IfY € V is Optimal, then
— each 2-(edge)-conn. comp.of G — Y is a ,
8 — min{ |X| | X: FVS.in G } = |Y| + #( inG—Y))
Max. Card.
Column
= Full Rank
\.::::::::::::::::::O“'

| m— m— m— W
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FV.S. in (Sub)Cubic Graphs — L.M.P.

4 R
Thm. VG = (V,E): Cubic, 3 L.M.P. Instance s.t.
* The Line set is the Vertex set V
 IfY € V is Optimal, then
— each 2-(edge)-conn. comp.of G — Y is a ,
X — min{ |X| | X: FVS.in G } = |Y| + #( inG—Y))
€=  Max. Card.
Reconstruct
Column
= Full Rank

| m— m— m— W
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Outline

* Feedback Vertex Sets in (Sub)Cubic Graphs

— Extension Trick (Using Alternative Formulations)



00||0000[[00000000i{00000|[000COC@I000O0]|0

Alternative Characterization

4 )
Thm. VG = (V,E): Cubic, 3 L.M.P. Instance s.t.
* The Line set is the Vertex set V
 IfY € V is Optimal, then
— each 2-(edge)-conn. comp.of G — Y is a ,
8 — min{ |X| | X: FVS.in G } = |Y| + #( inG—Y))
Max. Card.
Column
= Full Rank
\.::::::::::::::::::O“'

| m— m— m— W
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Alternative Characterization

4 )
Obs. VG = (V,E): Cubic, 3 L.M.P. Instance s.t.
* The Line set is the Vertex set V/
e XCVisaFV.S.inG < X is aSpanning Line Subset

\ /\ J

/ \

Contains a Base (NOT necessarily Parity Base)

Row
= Full Rank

| m— m— m— W
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Alternative Characterization

4 )
Obs. VG = (V,E): Cubic, 3 L.M.P. Instance s.t.
* The Line set is the Vertex set V/
e XCVisaFV.S.inG < X is aSpanning Line Subset

\ /\ J

/ \

Contains a Base (NOT necessarily Parity Base)

< V — X is Independent in the Dual Matroid

Row
= Full Rank

| m— m— m— W
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Alternative Characterization

f ™
Obs. VG = (V,E): Cubic, 3 L.M.P. Instance s.t.
* The Line set is the Vertex set V
e XCVisaFVS.inG & IV — X is Feasible
\ y
\ Fact. Dual of F-representable Matroid is F-representable)
Min.-Weight. F.V.S. — Max. Weight
Column
= Full Rank

I\ ! T Cd
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Equivalent Formulations of Weighted L.M.P.

Given Z € F"*?™: Matrix with Lines (Pairing of Columns)
w:[m] - R Weight on Lines '

. Min.-Weight e
Negating Parity Base Lifting up

&
Dup“caV by Suff. Large Const.

[Max.—WeightJ zual Matroid: [ Min.-Weight ]

Indep. Lines Spanning Lines
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Equivalent Formulations of Weighted L.M.P.

Given Z € F"*?™: Matrix with Lines (Pairing of Columns)
w:[m] - R Weight on Lines '

==

Min.-Weight
Negatmg Parity Base

L|ft|ng V Y&uplicating

[Max.—WelghtJ (ual Matroid: [ Min.-Weight ]

Indep. Lines Spanning Lines




00|0000[[00000000iI00000|000OO0OI0OO@|O

Summary on FV.S. in (Sub)Cubic Graphs

Using Alternative Formulations
of Weighted Linear Matroid Parity

* Minimum-Weight F.V.S. Problem in Subcubic Graphs
is solved in Polytime via Weighted L.M.P.

* |n fact, our reduction can be regarded as
Finding Maximum Forests in 3-Uniform Hypergraphs,
which reduces to L.M.P. in Unweighted case
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Outline

 Conclusion
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Conclusion

* Weighted L.M.P. is Very Powerful to show Tractability

 Two General Strategies
to Extend Applications of L.M.P. to Weighted Situations

— Construct Auxiliary Instance (with Weight-0 Elements)
— Use Alternative Formulations of Weighted L.M.P.

* Some Tricky or Other-type Applications??
— Like, e.g., Shortest Path & T-join - Weighted Matching?
— Derive Min-Max Duality or Polyhedral Property?



Appendix



Duplicating of L.M.P. Instance

——J 00 Z1||Z2 0 Z1 0 Z9
w | J | I | J | —
w 0 or 2w
Original Duplicated Instance
Feasible X 2 — Restriction of
Parity Base

Spanning X 2 == Parity Base




