

How to Make a Bipartite Graph DM-irreducible by Adding Edges

Satoru Iwata¹, Jun Kato², Yutaro Yamaguchi³

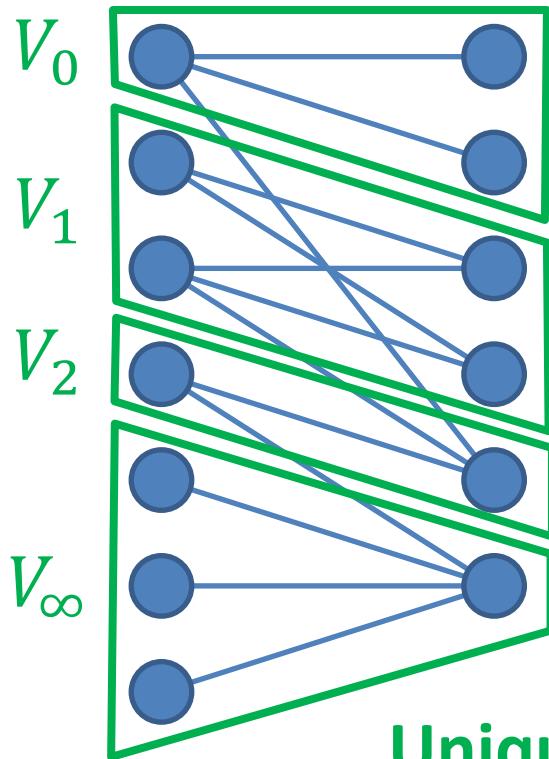
1. University of Tokyo, Japan.
2. TOYOTA Motor Corporation, Japan.
3. Osaka University, Japan.

JCCA2016 @Kyoto May 24, 2016

Dulmage–Mendelsohn Decomposition

[Dulmage–Mendelsohn 1958,59]

Given $G = (V^+, V^-; E)$: Bipartite Graph



- $|V_0^+| < |V_0^-|$ or $V_0 = \emptyset$
- $|V_i^+| = |V_i^-|$ ($i \neq 0, \infty$)
- $|V_\infty^+| > |V_\infty^-|$ or $V_\infty = \emptyset$

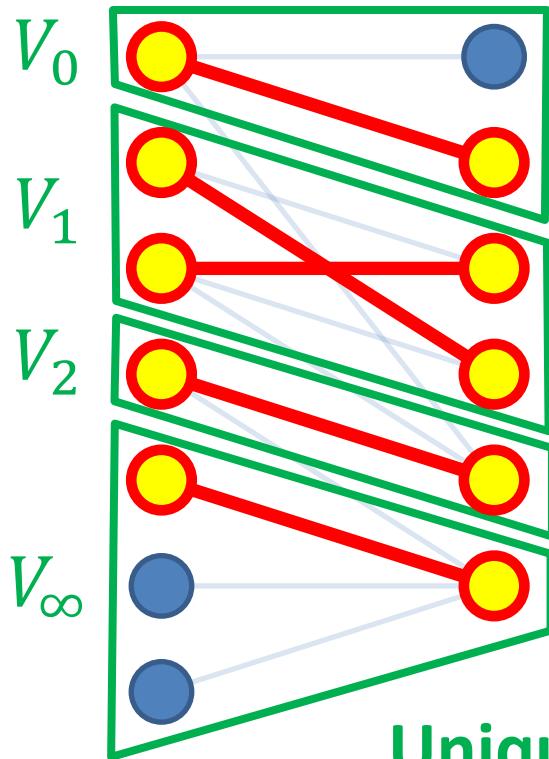
Unique Partition of Vertex Set

reflecting Structure of Maximum Matchings

Dulmage–Mendelsohn Decomposition

[Dulmage–Mendelsohn 1958,59]

Given $G = (V^+, V^-; E)$: Bipartite Graph



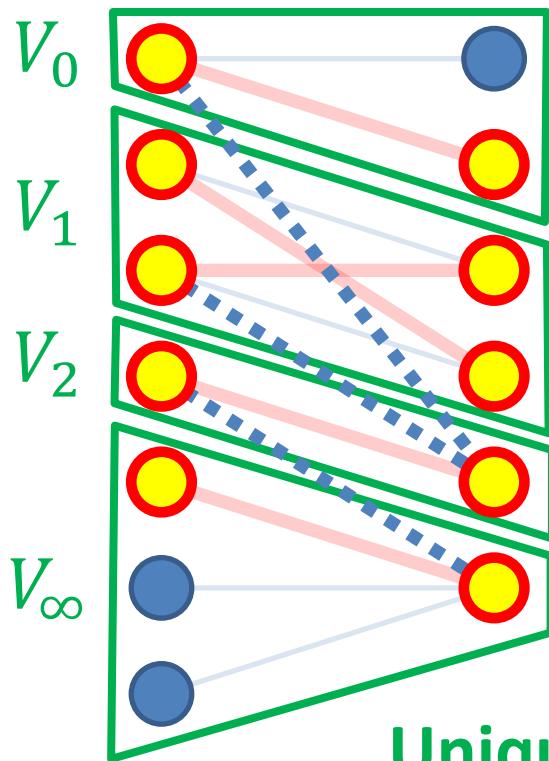
- $|V_0^+| < |V_0^-|$ or $V_0 = \emptyset$
- $|V_i^+| = |V_i^-|$ ($i \neq 0, \infty$)
- $|V_\infty^+| > |V_\infty^-|$ or $V_\infty = \emptyset$
- \forall **Max. Matching** in G is a union of **Perfect Matchings** in $G[V_i]$

reflecting Structure of **Maximum Matchings**

Dulmage–Mendelsohn Decomposition

[Dulmage–Mendelsohn 1958,59]

Given $G = (V^+, V^-; E)$: Bipartite Graph



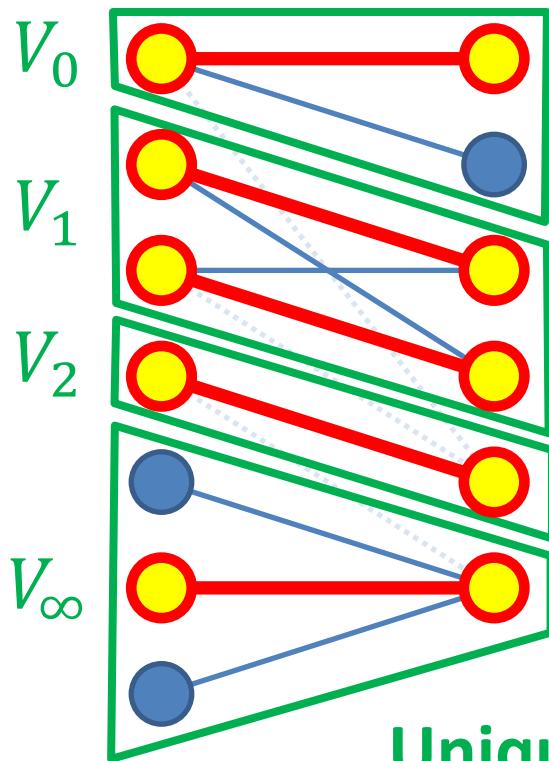
- \forall **Max. Matching** in G is a union of **Perfect Matchings** in $G[V_i]$
→ **Edges** between V_i and V_j ($i \neq j$) can**NOT** be used.

Unique Partition of Vertex Set
reflecting Structure of **Maximum Matchings**

Dulmage–Mendelsohn Decomposition

[Dulmage–Mendelsohn 1958,59]

Given $G = (V^+, V^-; E)$: Bipartite Graph



- **Max. Matching** in G is a union of **Perfect Matchings** in $G[V_i]$
→ **Edges** between V_i and V_j ($i \neq j$) **canNOT** be used.
- $\forall e$: Edge in $G[V_i]$,
Perfect Matching in $G[V_i]$ using e

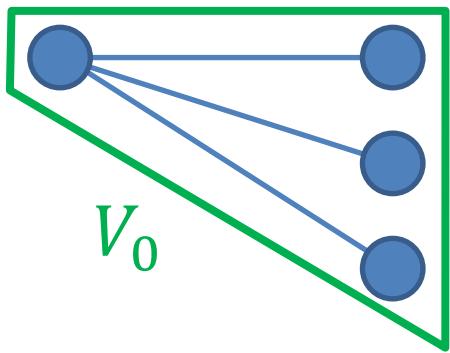
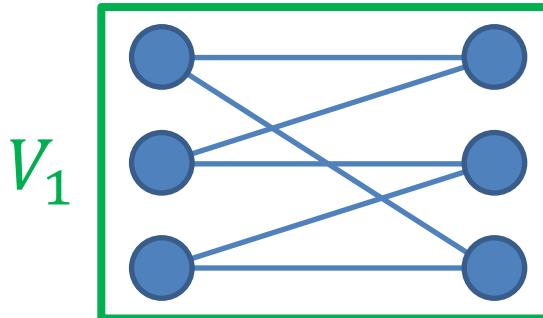
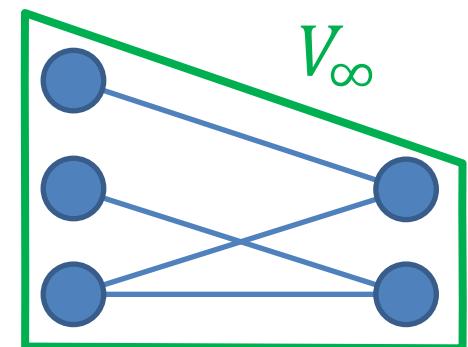
Unique Partition of Vertex Set
reflecting Structure of **Maximum Matchings**

DM-irreducibility

Def.

A bipartite graph is **DM-irreducible**

The DM-decomposition consists of a single component



Obs.

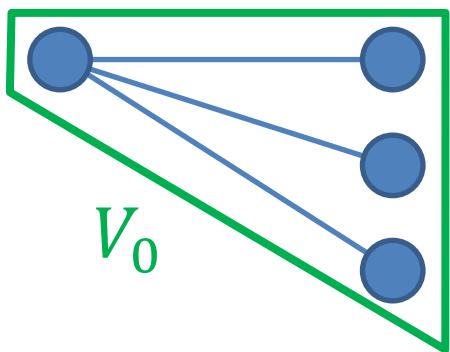
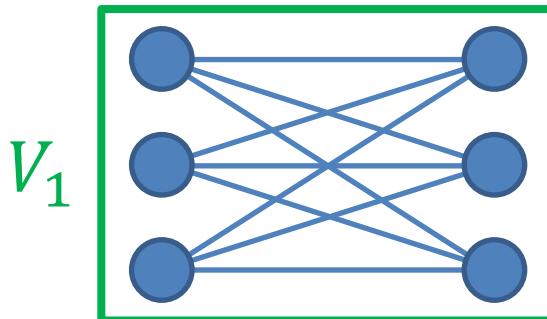
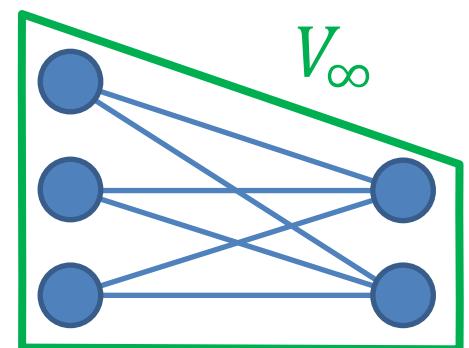
A bipartite graph G is **DM-irreducible**

$\forall e$: Edge in G , \exists Perfect Matching in G using e

DM-irreducibility

Obs. **Complete** bipartite graphs are **DM-irreducible**.

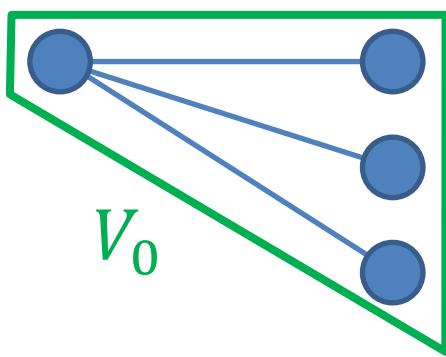
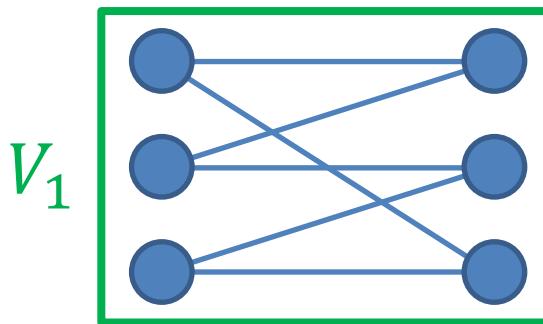
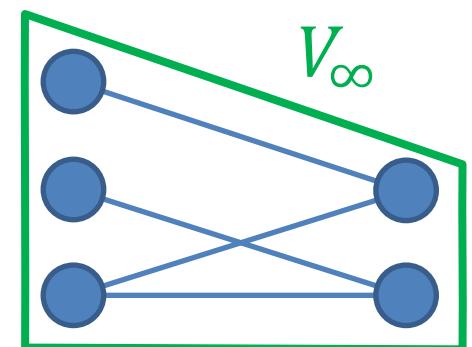
- Connected
- Every Edge is in some Perfect Matching



DM-irreducibility

Obs. Complete bipartite graphs are DM-irreducible.

- Connected
- Every Edge is in some Perfect Matching

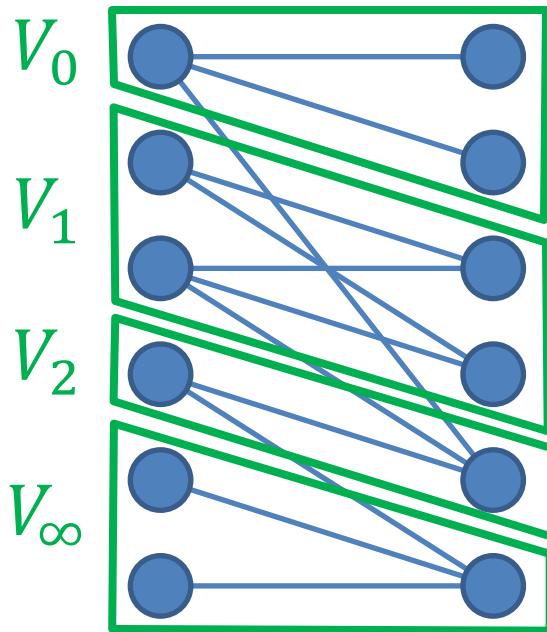
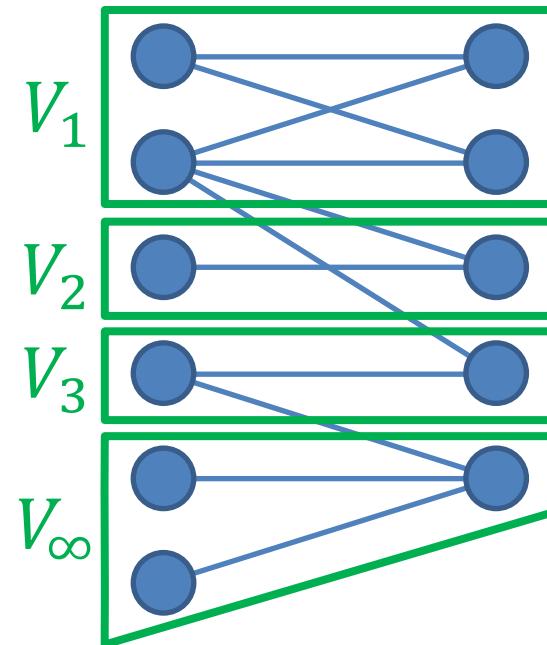


Complete $\not\Rightarrow$ DM-irreducible

How many additional edges are necessary
to make a bipartite graph DM-irreducible?

Our Problem

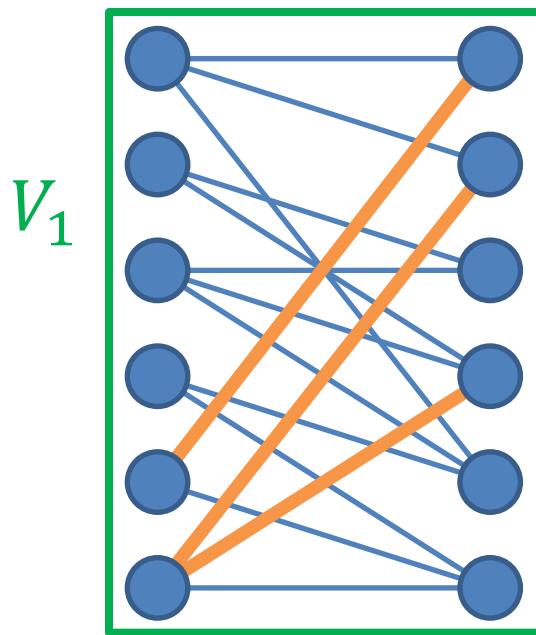
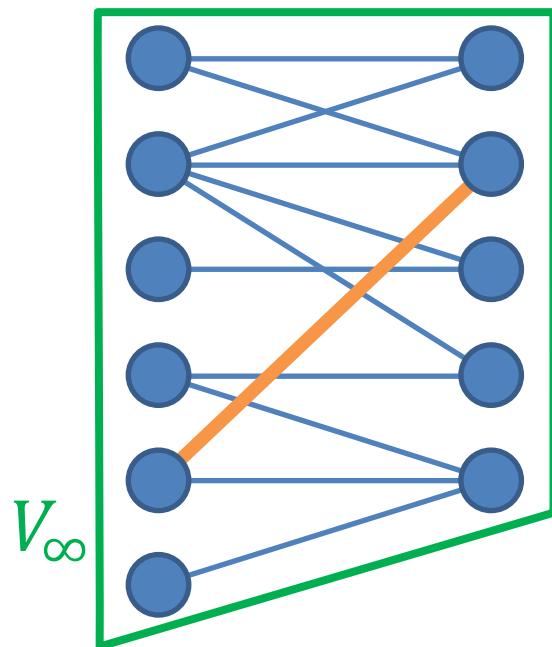
Given $G = (V^+, V^-; E)$: Bipartite Graph



Find Minimum Number of Additional Edges
to Make G DM-irreducible

Our Problem

Given $G = (V^+, V^-; E)$: Bipartite Graph



Find Minimum Number of Additional Edges
to Make G DM-irreducible

Background

Covering a Bisupermodular Function
by Directed Edges

Our Problem

Making a Digraph
Strongly Connected

- Min-Max Duality
- Polytime by Ellipsoid
[Frank–Jordán 1995]
- Pseudopolytime Algo.
[Végh–Benczúr 2008]

- Min-Max Duality
- Linear-time Algo.
[Eswaran–Tarjan 1976]

Our Results

Covering a Bisupermodular Function
by Directed Edges

Our Problem

Making a Digraph
Strongly Connected

- Min-Max Duality
- Polytime by Ellipsoid
[Frank–Jordán 1995]
- Pseudopolytime Algo.
[Végh–Benczúr 2008]

- Simple Polytime Algo.
- Constructive Proof for Min-Max

[I.–K.–Y. 2016]

- Min-Max Duality
- Linear-time Algo.
[Eswaran–Tarjan 1976]

Outline

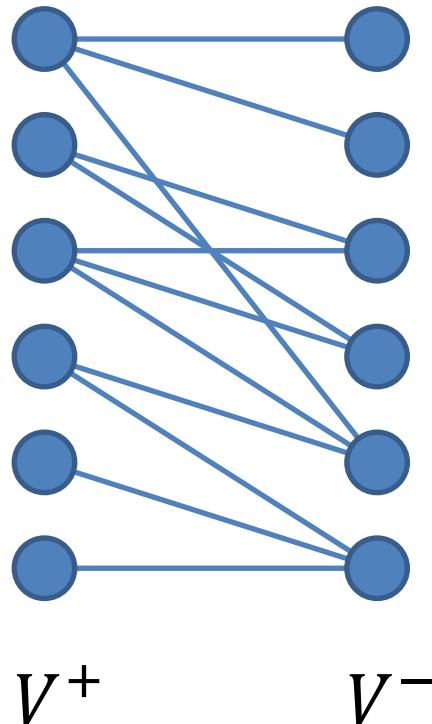
- Preliminaries: How to Compute DM-decomposition
 - Find a **Maximum Matching** in a Bipartite Graph
 - Decompose a Digraph into **Strongly Connected Components**
- Result: How to Make a Bipartite Graph DM-irreducible
 - Make a Digraph **Strongly Connected** [Eswaran–Tarjan 1976]
 - Find **Edge-Disjoint $s-t$ Paths** in a Digraph
- Conclusion

Outline

- Preliminaries: How to Compute DM-decomposition
 - Find a **Maximum Matching** in a Bipartite Graph
 - Decompose a Digraph into **Strongly Connected Components**
- Result: How to Make a Bipartite Graph DM-irreducible
 - Make a Digraph **Strongly Connected** [Eswaran–Tarjan 1976]
 - Find **Edge-Disjoint $s-t$ Paths** in a Digraph
- Conclusion

How to Compute DM-decomposition

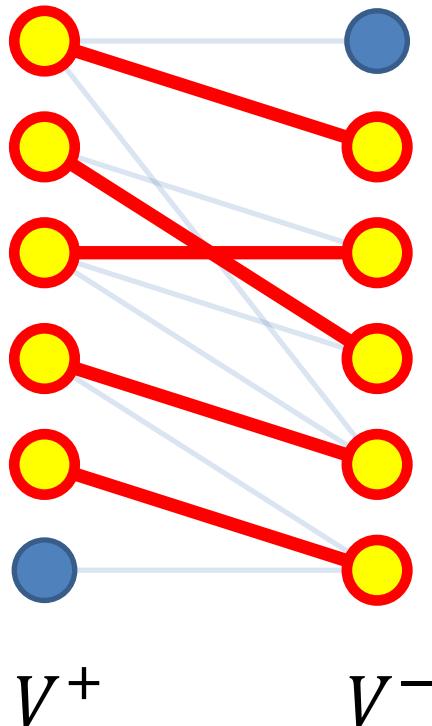
Given $G = (V^+, V^-; E)$: Bipartite Graph



How to Compute DM-decomposition

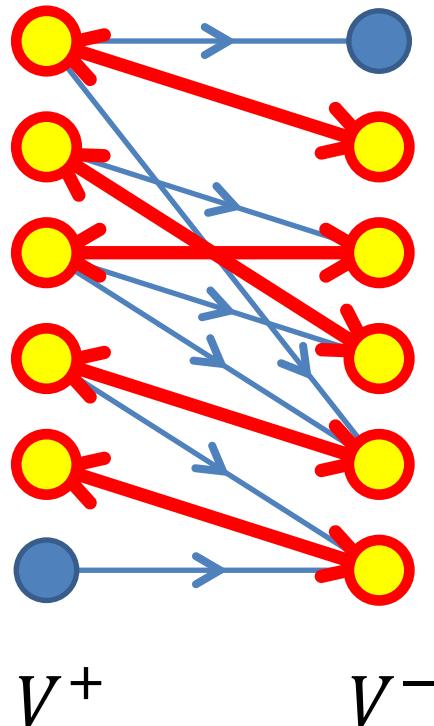
Given $G = (V^+, V^-; E)$: Bipartite Graph

- Find a Maximum Matching M in G



How to Compute DM-decomposition

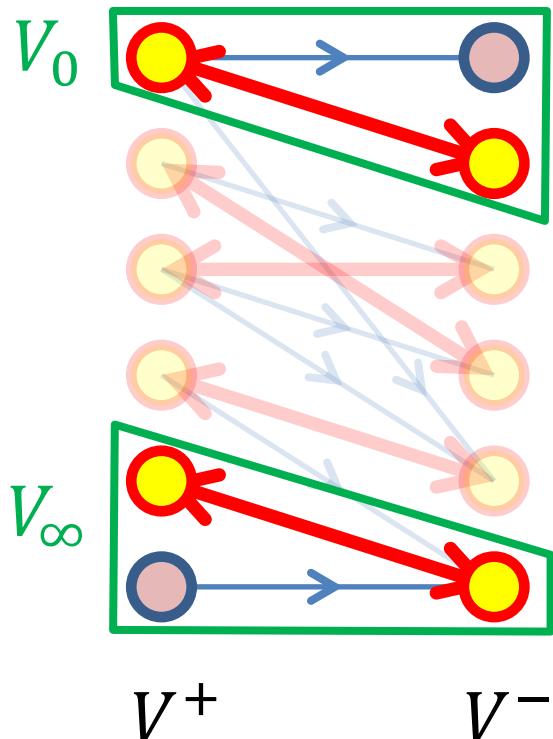
Given $G = (V^+, V^-; E)$: Bipartite Graph



- Find a Maximum Matching M in G
- Orient Edges so that
 - $M \Rightarrow$ Both Directions \leftrightarrow
 - $E \setminus M \Rightarrow$ Left to Right \rightarrow

How to Compute DM-decomposition

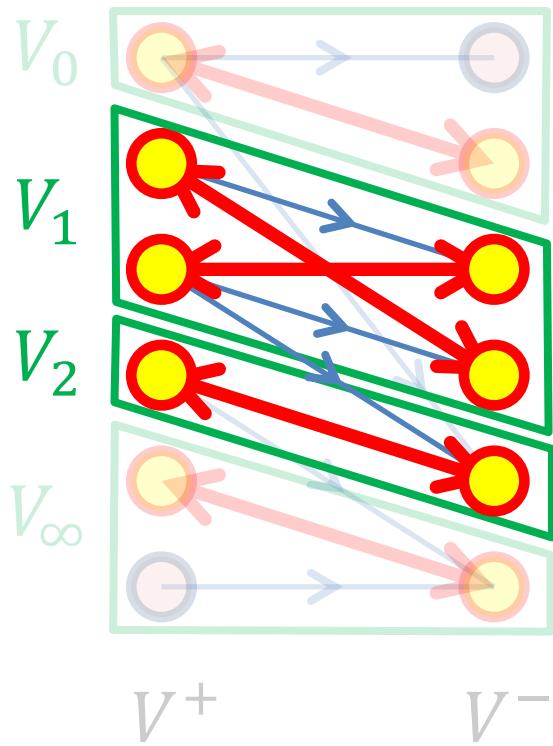
Given $G = (V^+, V^-; E)$: Bipartite Graph



- Find a Maximum Matching M in G
- Orient Edges so that
 - $M \Rightarrow$ Both Directions \leftrightarrow
 - $E \setminus M \Rightarrow$ Left to Right \rightarrow
- V_0 : Reachable to $V^- \setminus \partial^- M$
- V_∞ : Reachable from $V^+ \setminus \partial^+ M$

How to Compute DM-decomposition

Given $G = (V^+, V^-; E)$: Bipartite Graph



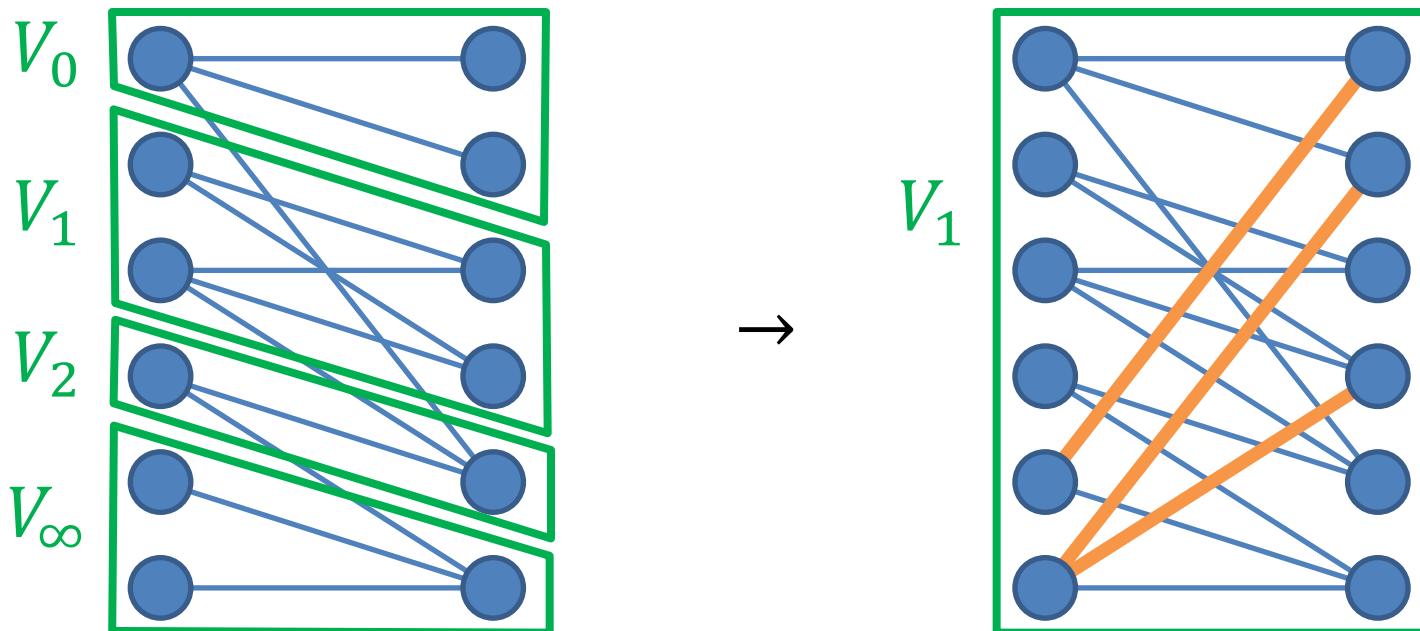
- Find a Maximum Matching M in G
- Orient Edges so that
 - $M \Rightarrow$ Both Directions \leftrightarrow
 - $E \setminus M \Rightarrow$ Left to Right \rightarrow
- V_0 : Reachable to $V^- \setminus \partial^- M$
- V_∞ : Reachable from $V^+ \setminus \partial^+ M$
- V_i : Strongly Connected Component of $G - V_0 - V_\infty$

Outline

- Preliminaries: How to Compute DM-decomposition
 - Find a **Maximum Matching** in a Bipartite Graph
 - Decompose a Digraph into **Strongly Connected Components**
- Result: How to Make a Bipartite Graph DM-irreducible
 - Make a Digraph **Strongly Connected** [Eswaran–Tarjan 1976]
 - Find **Edge-Disjoint $s-t$ Paths** in a Digraph
- Conclusion

Our Problem (Reminder)

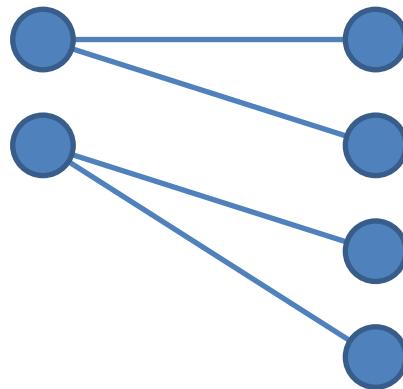
Given $G = (V^+, V^-; E)$: Bipartite Graph



Find Minimum Number of Additional Edges
to Make G DM-irreducible

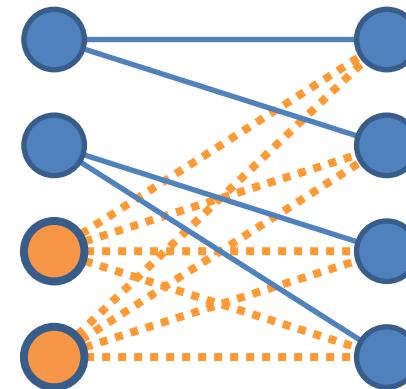
Unbalanced Case \rightarrow Balanced Case

$$|V^+| \neq |V^-|$$



G

$$|V^+| = |V^-|$$

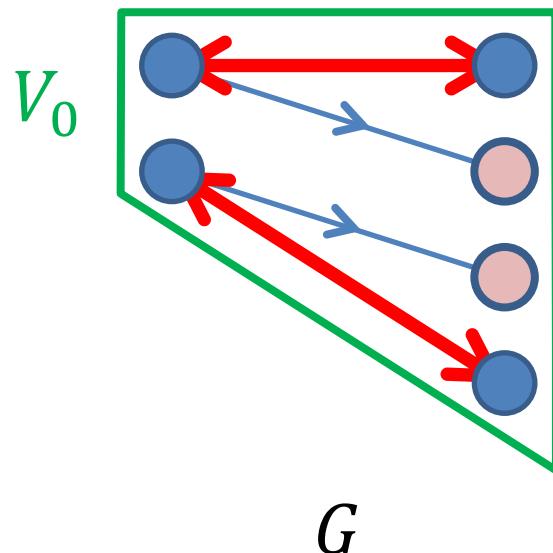


G'

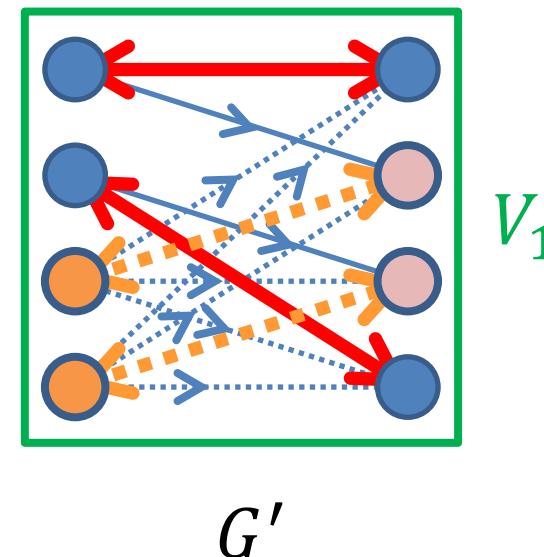
Fact G is **DM-irreducible** $\iff G'$ is **DM-irreducible**

Unbalanced Case \rightarrow Balanced Case

$$|V^+| \neq |V^-|$$



$$|V^+| = |V^-|$$

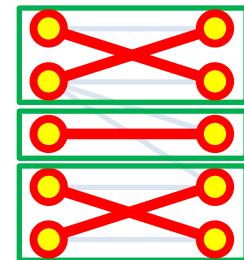


Fact G is **DM-irreducible** $\iff G'$ is **DM-irreducible**

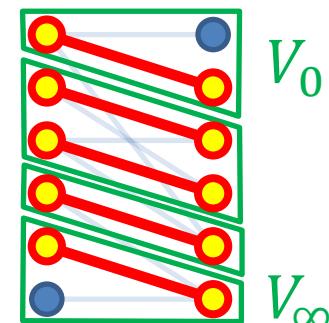
Case Analysis

Assumption $G = (V^+, V^-; E)$ is **Balanced**

Case 1. When G has a perfect matching.



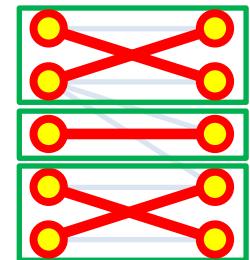
Case 2. When G has NO perfect matching.



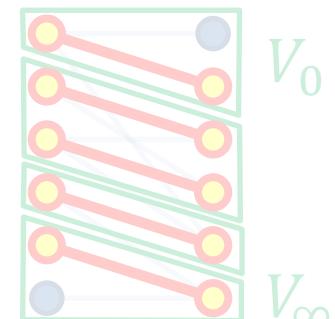
Case Analysis

Assumption $G = (V^+, V^-; E)$ is **Balanced**

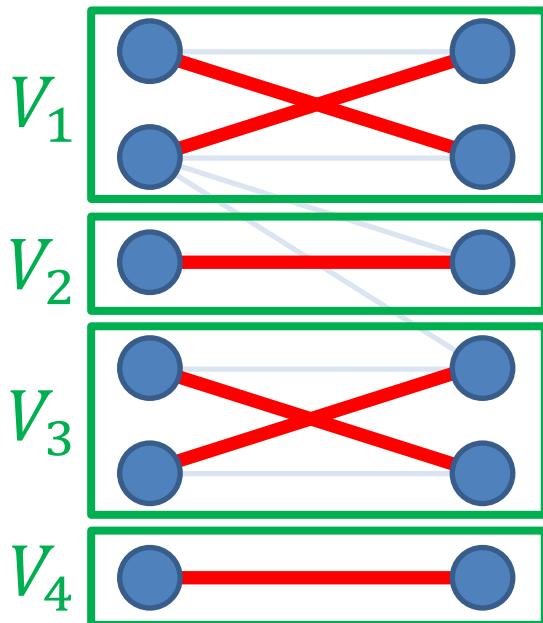
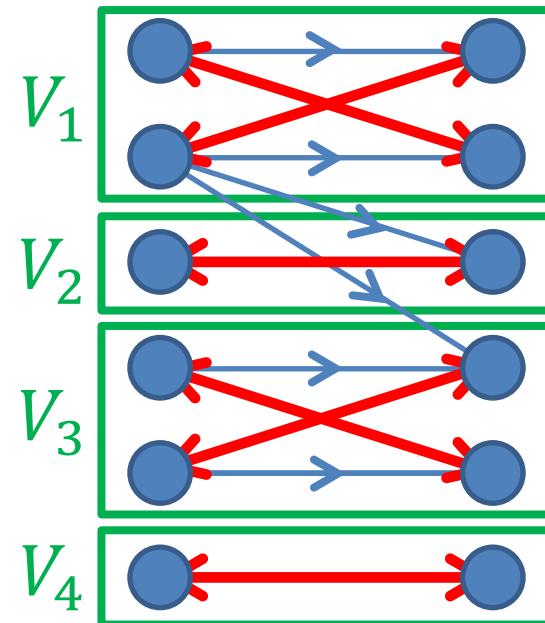
Case 1. When G has a perfect matching.



Case 2. When G has NO perfect matching.

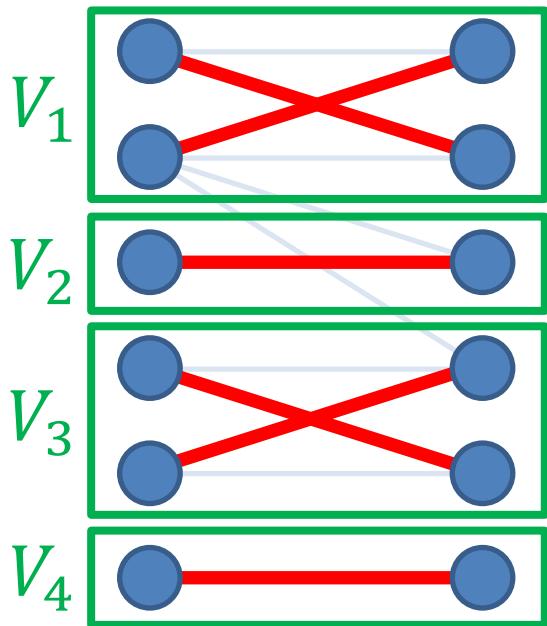
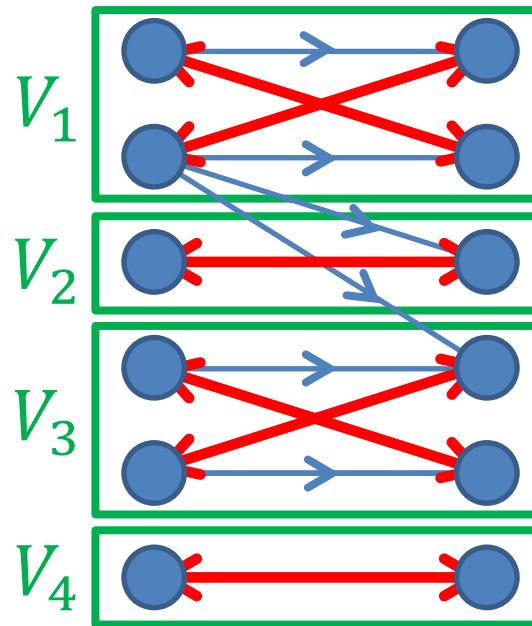
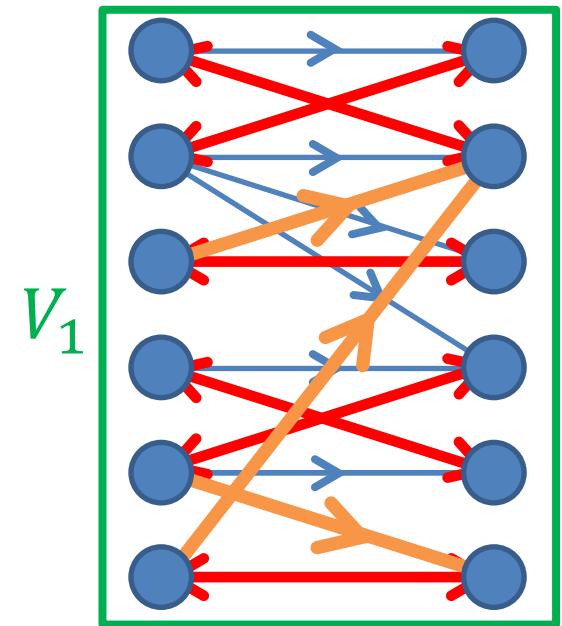


Case 1. Perfectly Matchable



DM-decomposition = **Strg. Conn. Comps.**

Case 1. Perfectly Matchable



DM-decomposition = Strg. Conn. Comps.

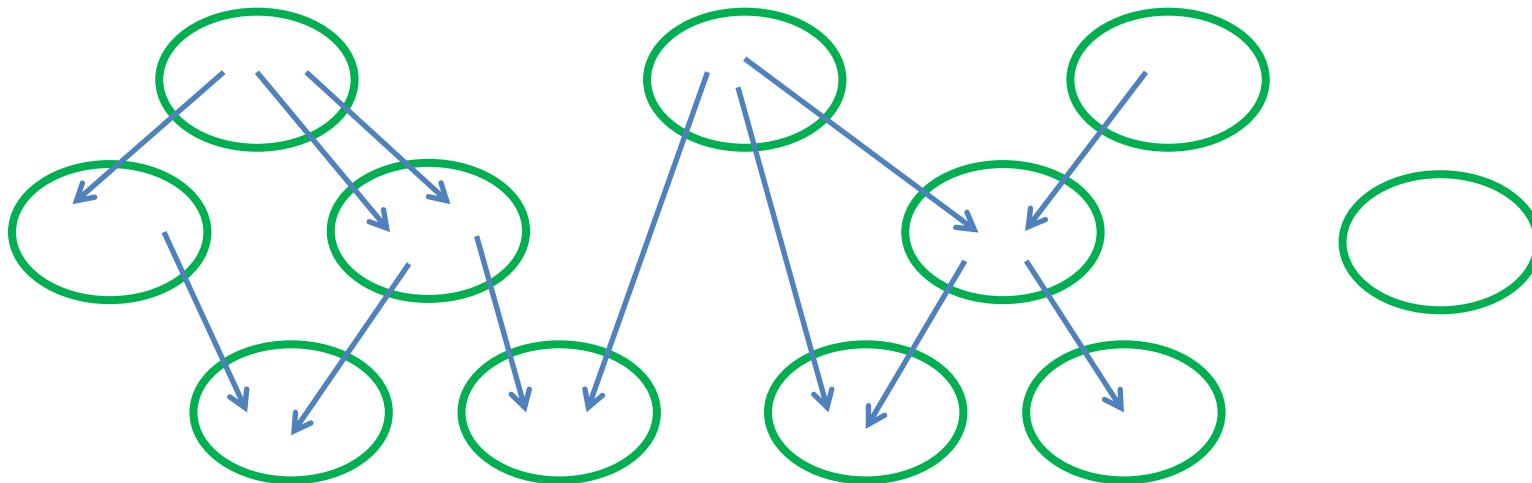
→ Make it Strg. Conn. by Adding Edges

Obs. **DM-irreducibility** is Equivalent to
Strong Connectivity of the Oriented Graph

How to Make a Digraph Strongly Connected

Given $G = (V, E)$: Directed Graph

: Strg. Conn. Comp.



Find **Minimum Number of Additional Edges**
to Make G **Strongly Connected**

How to Make a Digraph Strongly Connected

Given $G = (V, E)$: Directed Graph

: Strg. Conn. Comp.

Each Source needs an Entering Edge



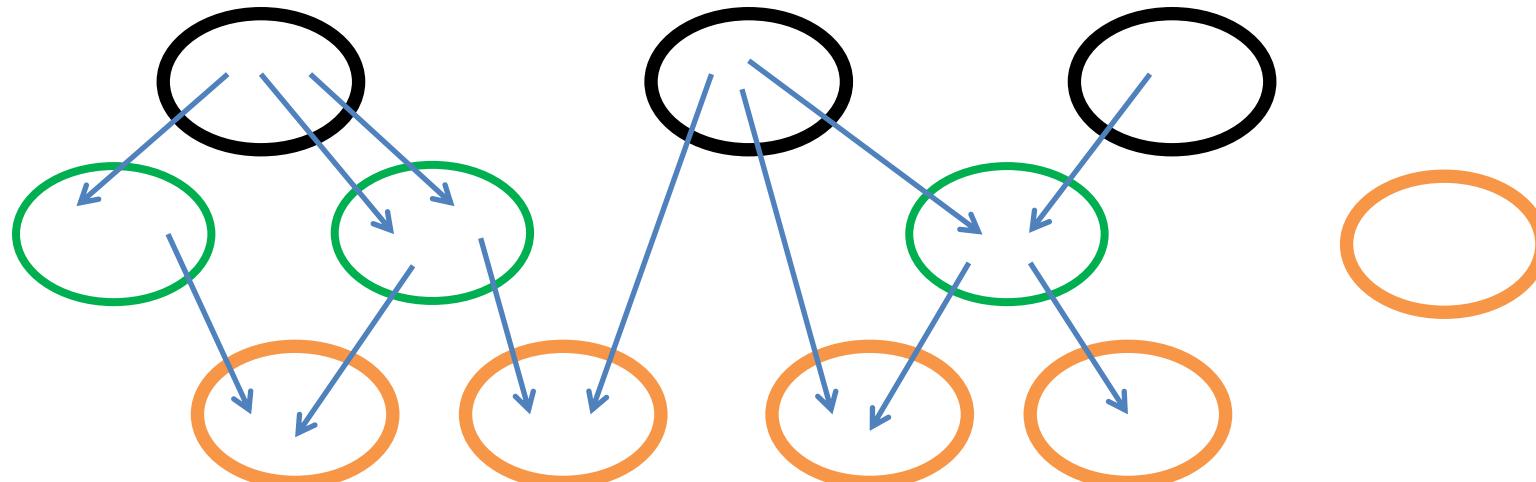
Find Minimum Number of Additional Edges
to Make G Strongly Connected

How to Make a Digraph Strongly Connected

Given $G = (V, E)$: Directed Graph

: Strg. Conn. Comp.

Each **Source** needs an Entering Edge



Each **Sink** needs a Leaving Edge

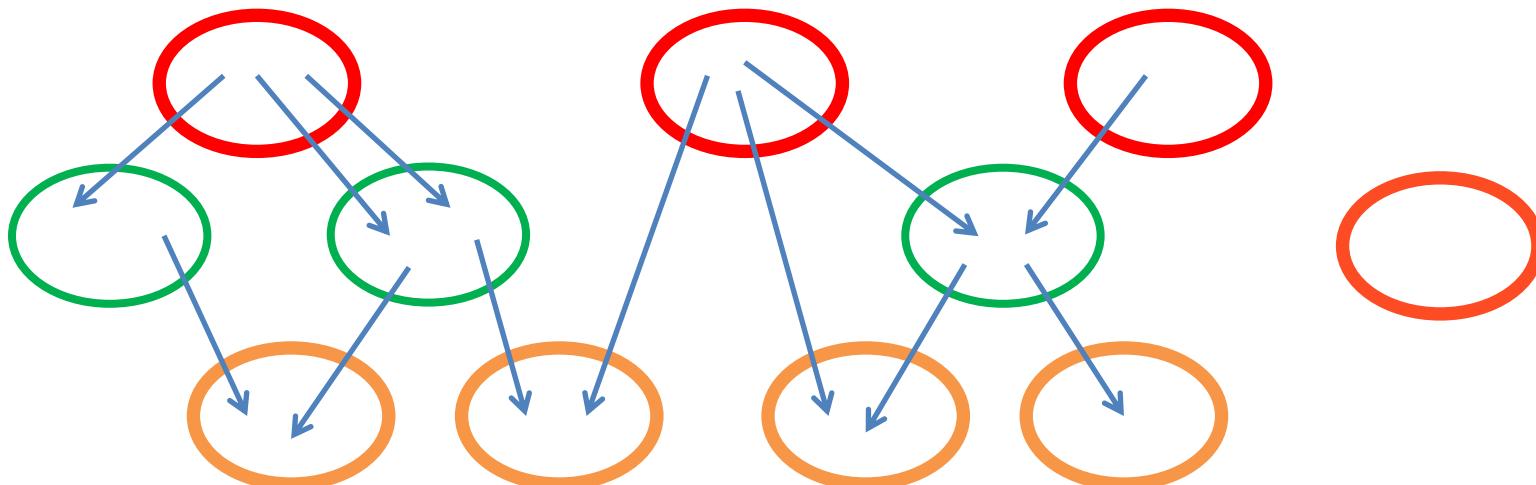
Find **Minimum Number of Additional Edges**
to Make G **Strongly Connected**

How to Make a Digraph Strongly Connected

Given $G = (V, E)$: Directed Graph NOT Strg. Conn.

Find Minimum Number of Additional Edges
to Make G **Strongly Connected**

Obs. $\max\{\#\text{ of Sources}, \#\text{ of Sinks}\}$ edges are **Necessary**.



How to Make a Digraph Strongly Connected

Given $G = (V, E)$: Directed Graph NOT Strg. Conn.

Find Minimum Number of Additional Edges
to Make G Strongly Connected

Obs. $\max\{\# \text{ of Sources}, \# \text{ of Sinks}\}$ edges are **Necessary**.

Thm. $\max\{\# \text{ of Sources}, \# \text{ of Sinks}\}$ edges are **Sufficient**.
One can find such Additional Edges in **Linear Time**.

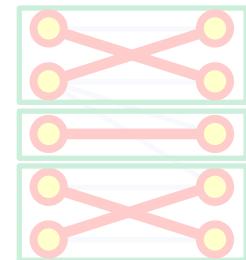
[Eswaran–Tarjan 1976]

→ Case 1 is Solved in **Linear Time**.

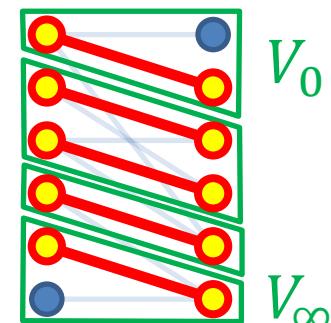
Case Analysis

Assumption $G = (V^+, V^-; E)$ is **Balanced**

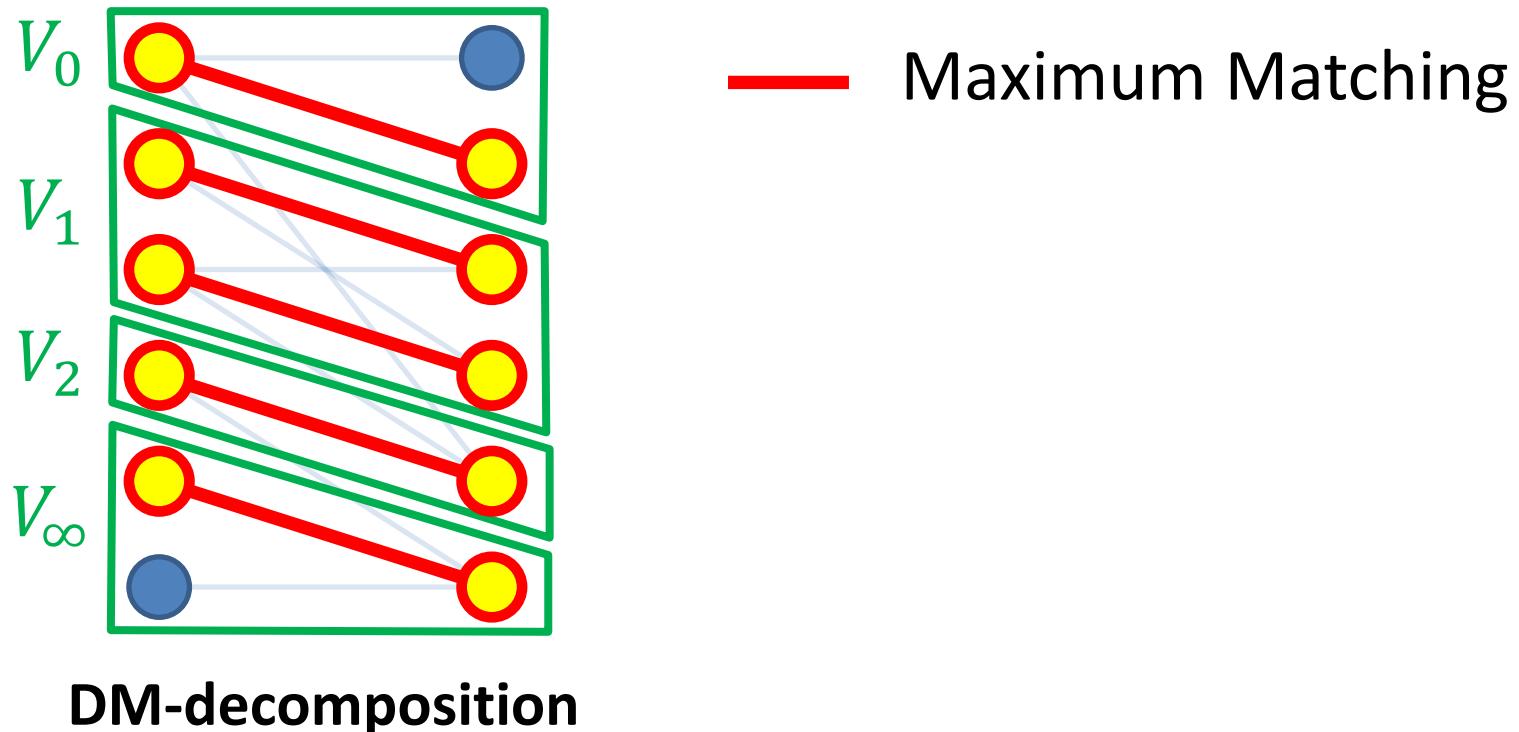
Case 1. When G has a perfect matching.



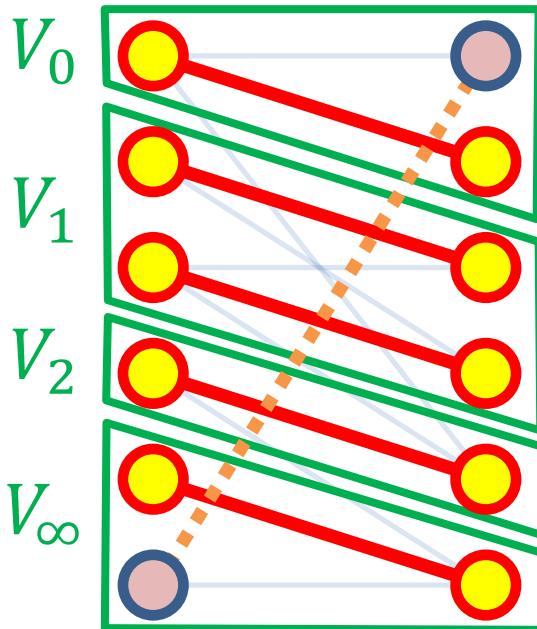
Case 2. When G has NO perfect matching.



Case 2. NO Perfect Matching



Case 2. NO Perfect Matching



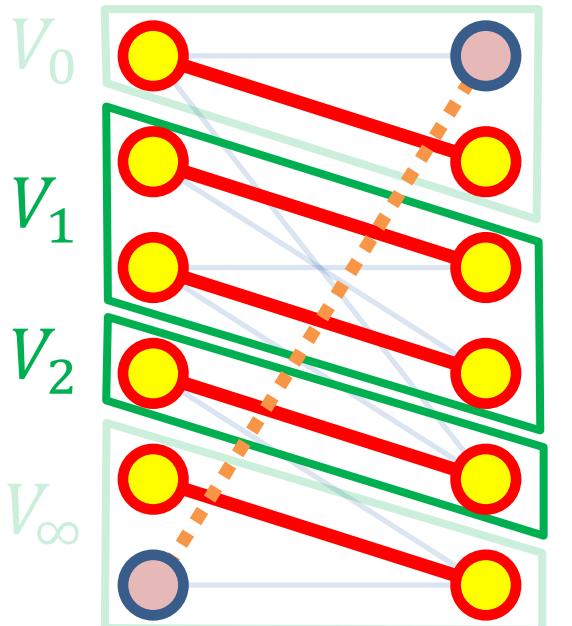
— Maximum Matching
↓
+ Perfect Matching

DM-decomposition

Idea

Connect Exposed Vertices to Reduce to Case 1

Case 2. NO Perfect Matching



— Maximum Matching

— + —

Perfect Matching

↓
Each V_i ($i \neq 0, \infty$)
remains as it was

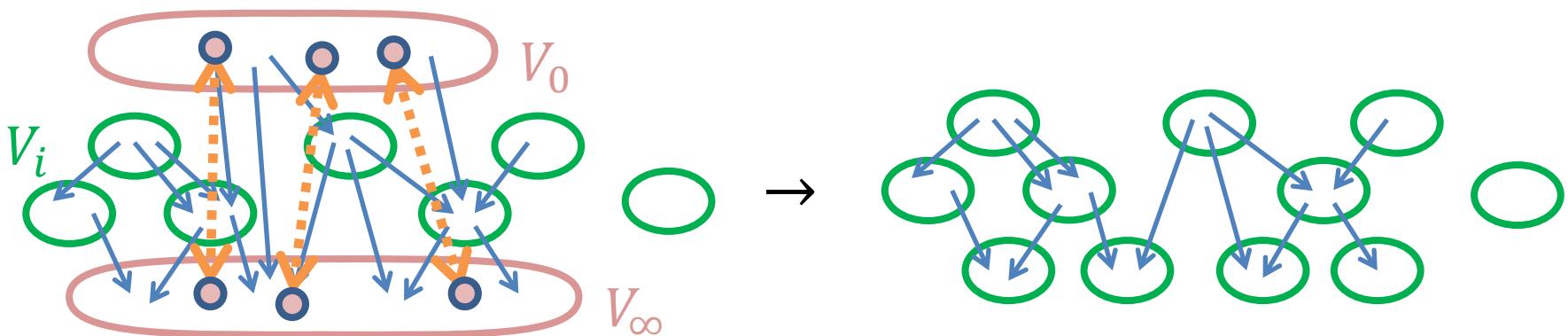
Idea

Connect Exposed Vertices to Reduce to Case 1

From the Viewpoint of Oriented Graphs

Idea

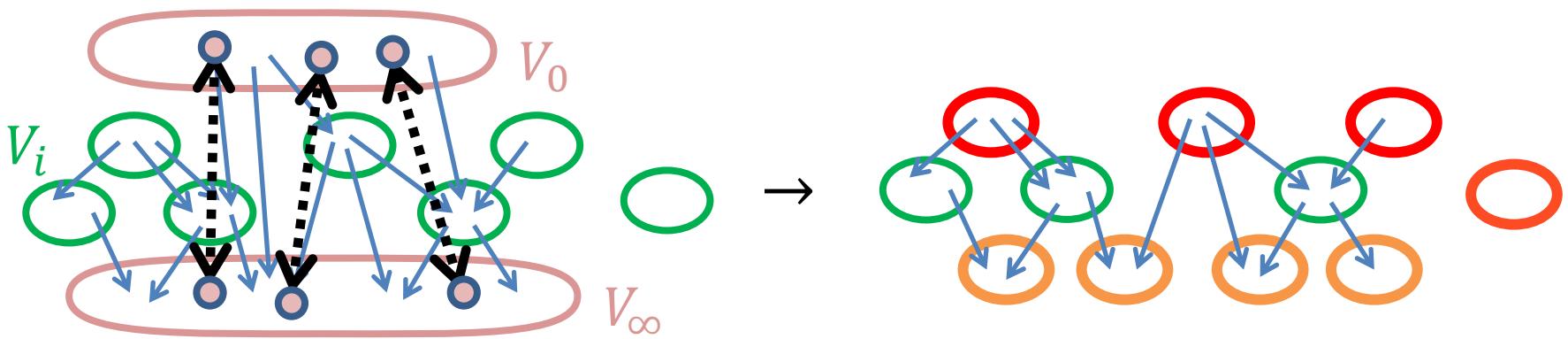
Connect Exposed Vertices to Reduce to Case 1



From the Viewpoint of Oriented Graphs

Idea

Connect **Exposed Vertices** to Reduce to Case 1



$$\underline{|V^+| - |M|}$$

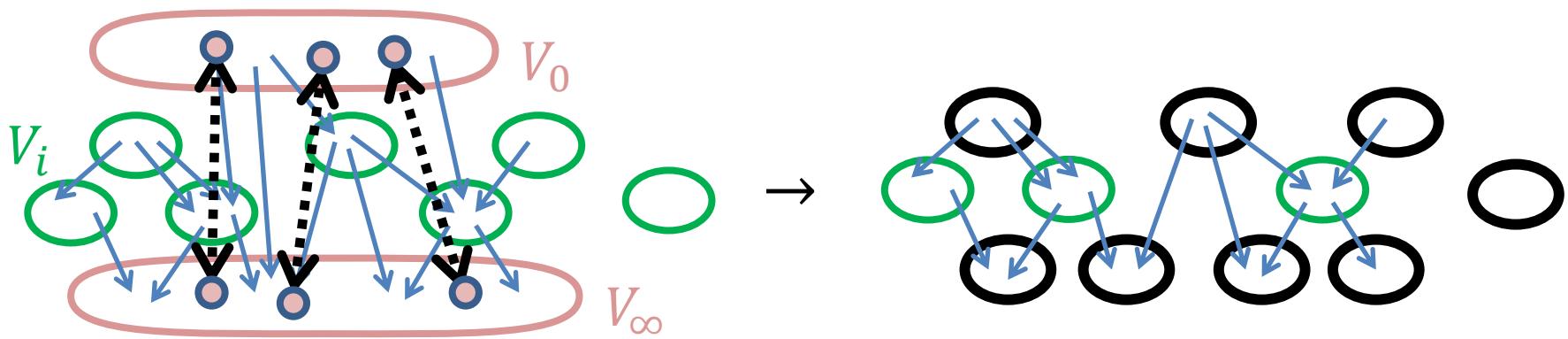
$$\underline{\max\{\# \text{ of Sources, } \# \text{ of Sinks}\}}$$

of Additional Edges

From the Viewpoint of Oriented Graphs

Idea

Connect **Exposed Vertices** to Reduce to Case 1



$$\underline{|V^+| - |M|}$$

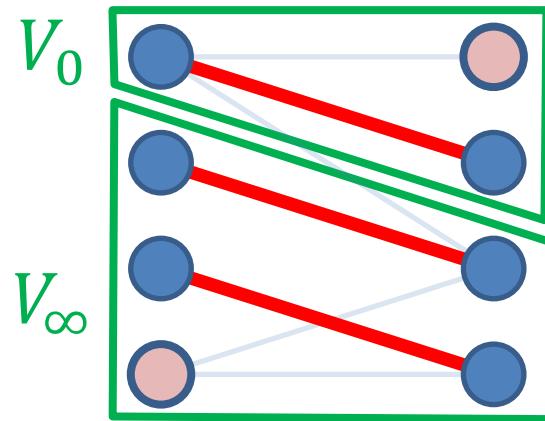
Const.

of Additional Edges

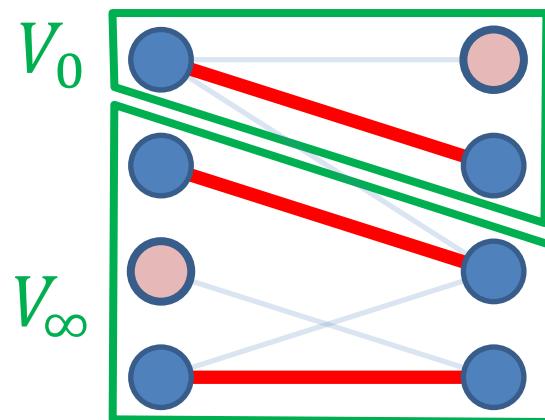
$$\underline{\max\{\# \text{ of Sources, } \# \text{ of Sinks}\}}$$

Depending on M

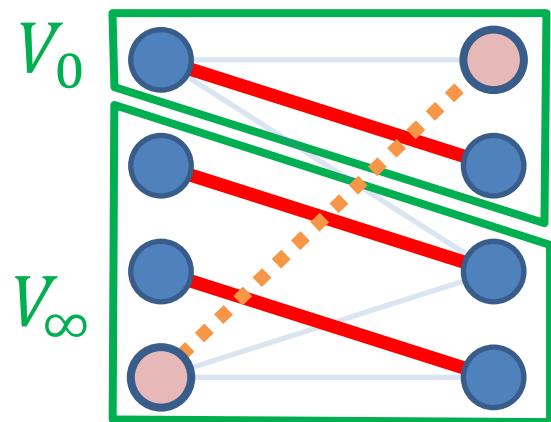
Sources and Sinks in Resulting Digraph



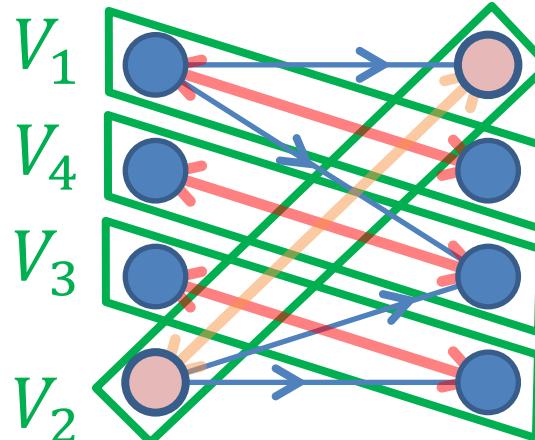
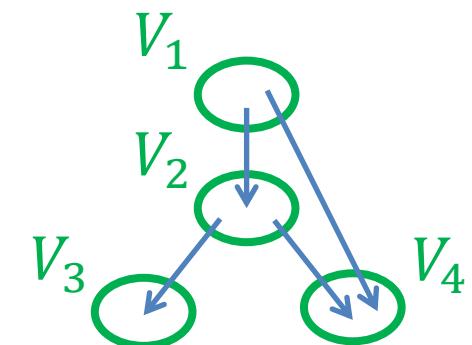
Choice of M



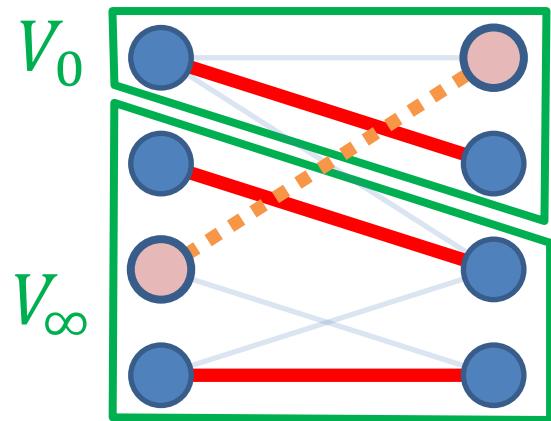
Sources and Sinks in Resulting Digraph



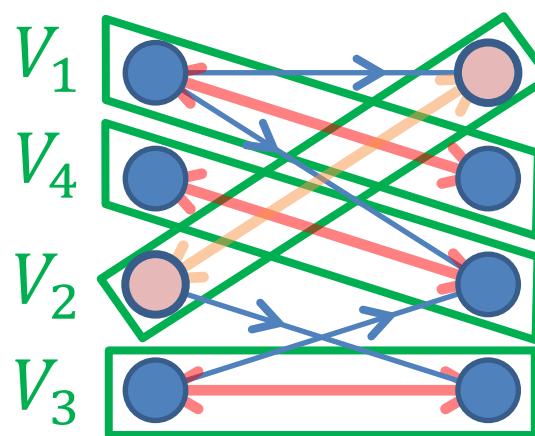
→



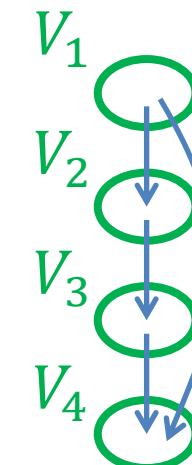
Choice of M



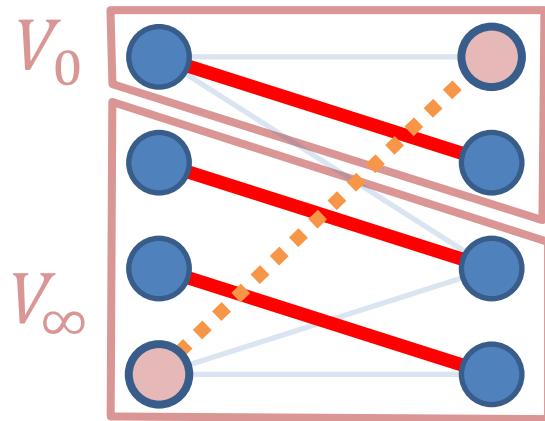
→



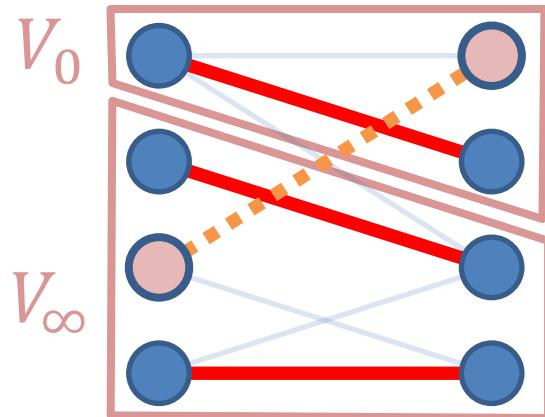
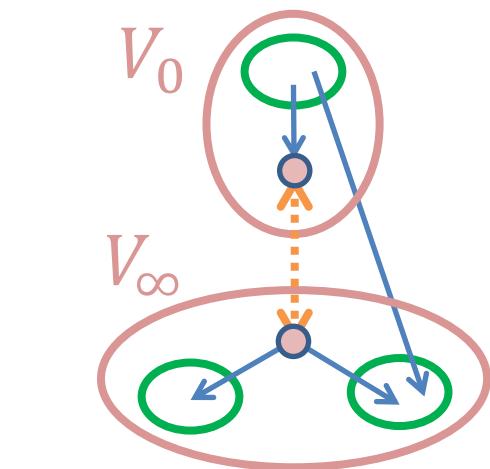
Simplified



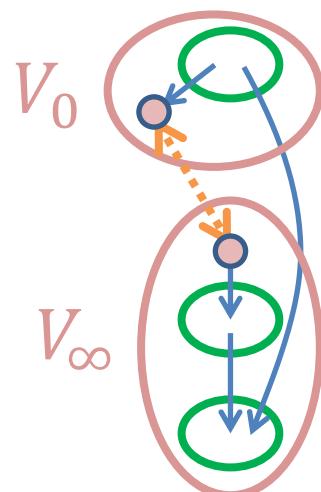
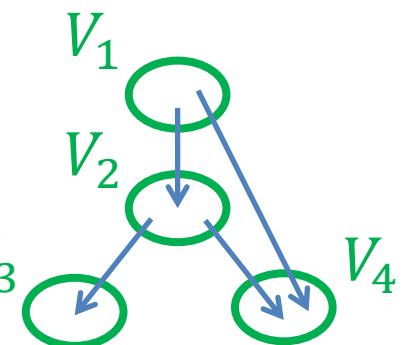
Sources and Sinks in Resulting Digraph



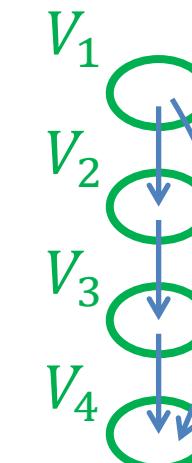
Choice of M



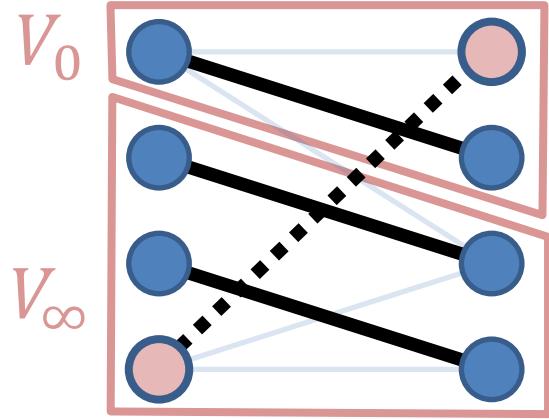
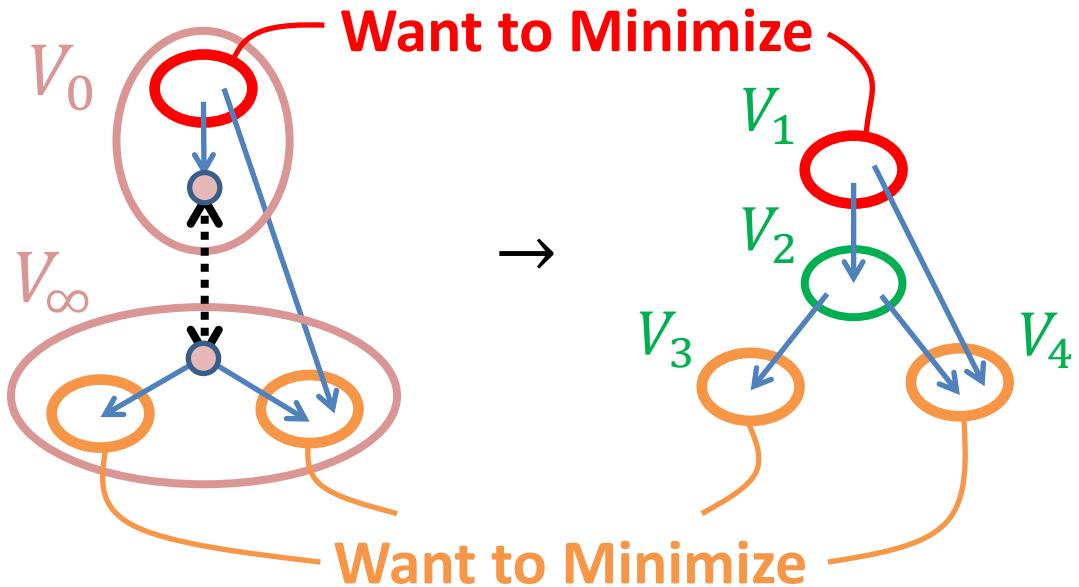
Strg. Conn. Comps.



Simplified



Sources and Sinks in Resulting Digraph

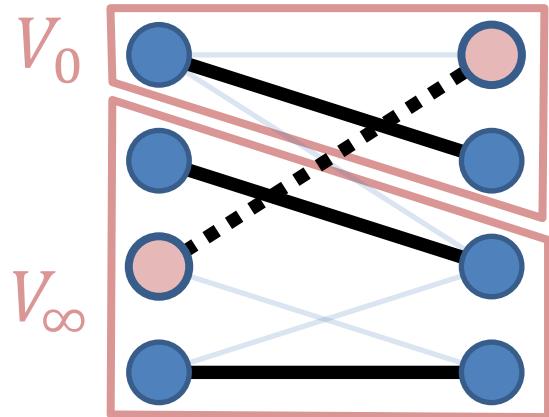
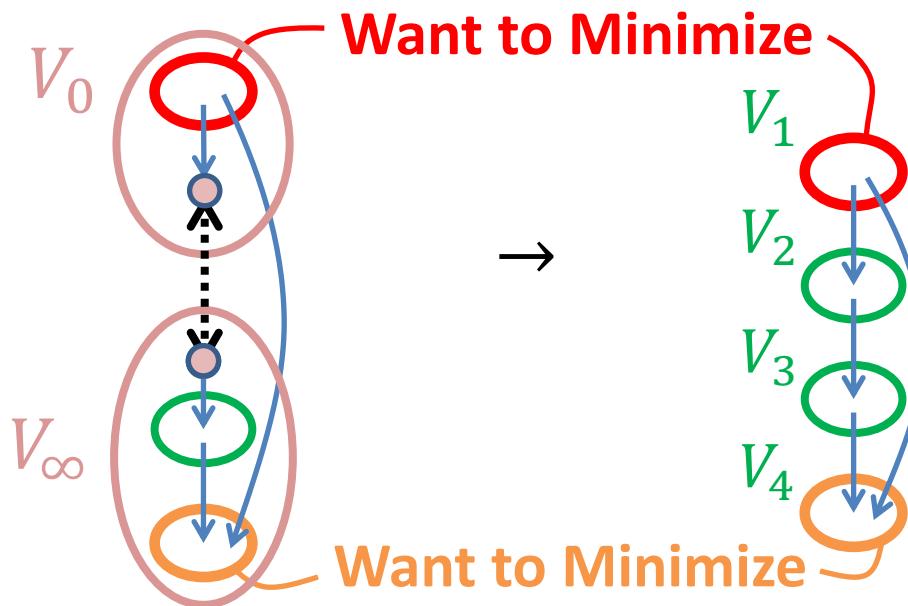


Obs.

(# of **Resulting Sources**) = (# of **Sources in V_0**) + const.

(# of **Resulting Sinks**) = (# of **Sinks in V_∞**) + const.

Sources and Sinks in Resulting Digraph



Obs.

(# of **Sources** in V_0) and (# of **Sinks** in V_∞) vary Indep.
by choices of **Perfect Matchings** in $G[V_0]$ and $G[V_\infty]$.

How to Minimize (# of Sinks in V_∞)

Lem. (# of Sinks in V_∞) is **NOT** Minimized

\Updownarrow

\exists Edge-disjoint Paths from $\exists \text{O}$ to $\exists \text{O}_1, \text{O}_2$

[I.-K.-Y. 2016]

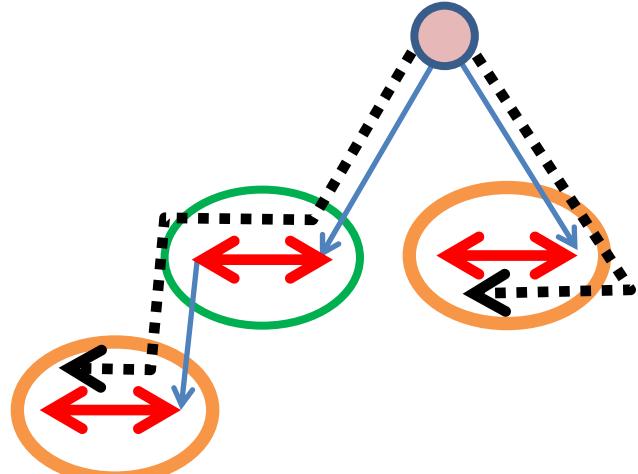
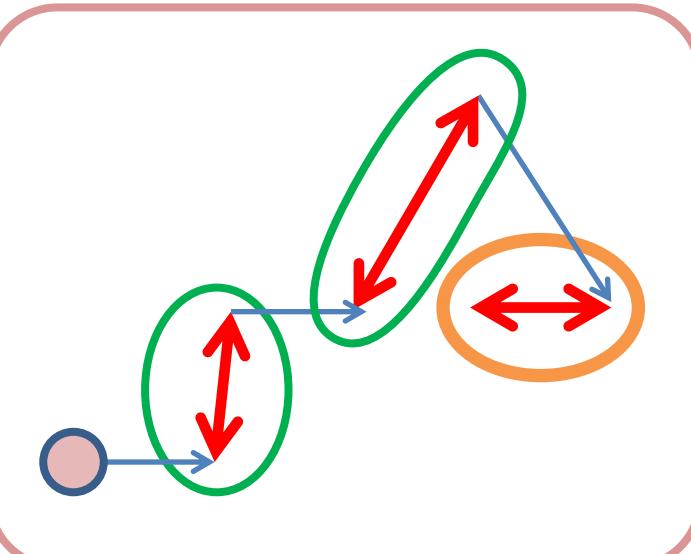
○: Exposed

○: Sink

○: S.C.C.

Flipping

V_∞

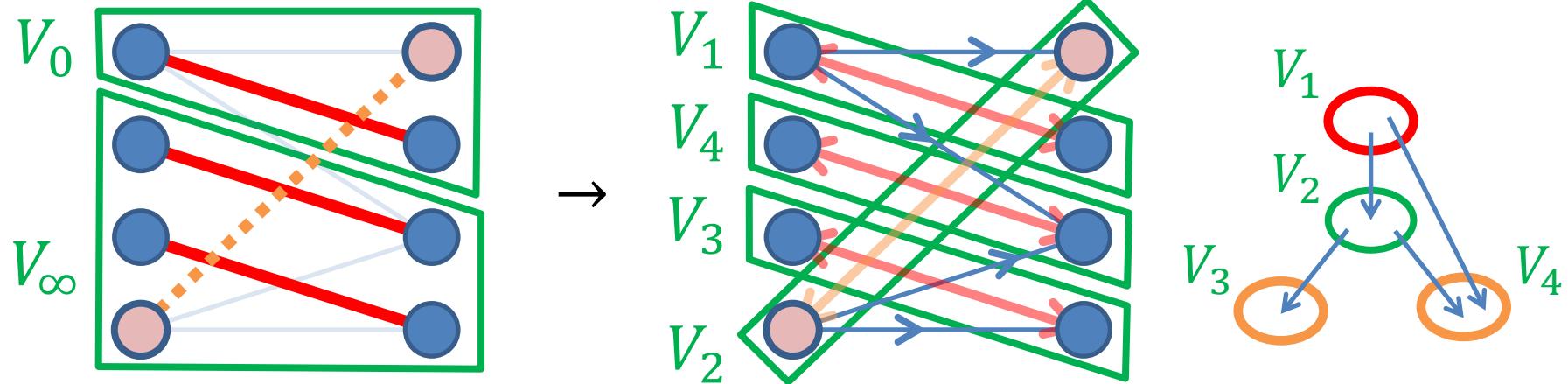


Summary of Case 2

Case 2. G has NO Perfect Matching

- Connect **Exposed Vertices** to Make **Perfect Matching**
→ Reduce to Case 1

$$\text{OPT} = \max\{\# \text{ of Sources}, \# \text{ of Sinks}\}$$



Summary of Case 2

Case 2. G has NO Perfect Matching

- Connect Exposed Vertices to Make **Perfect Matching**
 - Reduce to Case 1
- $\text{OPT} = \max\{\#\text{ of Sources}, \#\text{ of Sinks}\}$
- Minimize (<# of **Sources** in V_0) and (<# of **Sinks** in V_∞), in Advance, by finding Edge-disjoint Paths repeatedly.

Summary of Case 2

Case 2. G has NO Perfect Matching

- Connect Exposed Vertices to Make **Perfect Matching**
 - Reduce to Case 1
- $\text{OPT} = \max\{\#\text{ of Sources}, \#\text{ of Sinks}\}$
- Minimize (# of **Sources** in V_0) and (# of **Sinks** in V_∞), in Advance, by finding Edge-disjoint Paths repeatedly.

Thm. One can find an optimal solution by this strategy.

→ Constructive Proof for **Min-Max Duality**

[I.-K.-Y. 2016]

Outline

- Preliminaries: How to Compute DM-decomposition
 - Find a **Maximum Matching** in a Bipartite Graph
 - Decompose a Digraph into **Strongly Connected Components**
- Result: How to Make a Bipartite Graph DM-irreducible
 - Make a Digraph **Strongly Connected**
 - Find **Edge-Disjoint $s-t$ Paths** in a Digraph
- Conclusion

Conclusion

- We propose a simple **Polytime Algorithm** for finding a minimum number of **Additional Edges** to make a Bipartite Graph **DM-irreducible**
- Our Algorithm is based on two elementary techniques:
 - Find **Edge-disjoint $s-t$ Paths** in a **Directed Graph**
 - Make a Digraph **Strongly Connected** by Adding Edges
- The Halting Condition of Our Algorithm implies **Min-Max Duality** extending [Eswaran–Tarjan 1976]