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Dulmage—Mendelsohn Decomposition

Given G = (V*,V~;E): Bipartite Graph
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Dulmage—Mendelsohn Decomposition

Given
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G = (V*,V~; E): Bipartite Graph

* YMax. Matching in G is a union of
Perfect Matchings in G|V;]

— Edges between V; and V; (i # j)
canNOT be used.

* Ve: Edgein G|V;],
JPerfect Matching in G|V;] using e

Unique Partition of Vertex Set

reflecting Structure of Maximum Matchings



DM-irreducibility
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Def. A bipartite graph is DM-irreducible
g The DM-decomposition consists of a single component y
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DM-irreducibility

( Obs. Complete bipartite graphs are DM-irreducible. J

* Connected
* Every Edge is in some Perfect Matching

O o~

Vi




DM-irreducibility

( Obs. Complete bipartite graphs are DM-irreducible. J

* Connected
* Every Edge is in some Perfect Matching
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Complete q:é DMe-irreducible

How many additional edges are necessary
to make a bipartite graph DM-irreducible?



Our Problem

Given G = (V*,V~;E): Bipartite Graph
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Find Minimum Number of Additional Edges
to Make G DM-irreducible
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Background
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Covering a Bisupermodular Function

by Directed Edges
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Min-Max Duality

* Polytime by Ellipsoid

Pseudopolytime Algo.

Min-Max Duality
Linear-time Algo.
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Our Results

|

Covering a Bisupermodular Function

by Directed Edges

* Min-Max Duality
] * Polytime by Ellipsoid
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* Pseudopolytime Algo.

* Simple Polytime Algo.
 Constructive Proof for Min-Max
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* Min-Max Duality
* Linear-time Algo.
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Outline

* Preliminaries: How to Compute DM-decomposition

— Find a Maximum Matching in a Bipartite Graph
— Decompose a Digraph into Strongly Connected Components

e Result: How to Make a Bipartite Graph DM-irreducible

— Make a Digraph Strongly Connected
— Find Edge-Disjoint s—t Paths in a Digraph

e Conclusion
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Outline

* Preliminaries: How to Compute DM-decomposition

— Find a Maximum Matching in a Bipartite Graph
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How to Compute DM-decomposition

Given G = (V*,V~;E): Bipartite Graph
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How to Compute DM-decomposition

Given G = (V*,V~;E): Bipartite Graph

* Find a Maximum Matching M in G

A,
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How to Compute DM-decomposition

Given G = (V*,V~;E): Bipartite Graph

* Find a Maximum Matching M in G

>

 Orient Edges so that
M — Both Directions <
E\M = LefttoRight -
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How to Compute DM-decomposition

Given G = (V*,V~;E): Bipartite Graph

* Find a Maximum Matching M in G

V.
0 % e Orient Edges so that
M = Both Directions <
E\M = LefttoRight -
* Vy: Reachableto V™ \ 0™ M

Voo * V,: Reachable fromV* \ 0™ M
O

v+ V=
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How to Compute DM-decomposition

Given G = (V*,V~;E): Bipartite Graph

* Find a Maximum Matching M in G

e Orient Edges so that
V, M = Both Directions <
E\M = LefttoRight -

* Vy: Reachableto V™ \ 0™ M
* V,: Reachable from V* \ 0" M

* |/;: Strongly Connected Component
Of G — VO - Voo
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Outline

e Result: How to Make a Bipartite Graph DM-irreducible

— Make a Digraph Strongly Connected
— Find Edge-Disjoint s—t Paths in a Digraph
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Our Problem (Reminder)

Given G = (V*,V~;E): Bipartite Graph
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Find Minimum Number of Additional Edges
to Make G DM-irreducible




Unbalanced Case — Balanced Case
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[ Fact G is DM-irreducible < G’ is DM-irreducible ]

22



Unbalanced Case — Balanced Case
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[ Fact G is DM-irreducible < G’ is DM-irreducible ]
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Case Analysis

—

[ Assumption G = (V*,V~;E) is Balanced

Case 1. When G has a perfect matching.

Case 2. When G has NO perfect matching.
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Case Analysis

[ Assumption G = (V*,V~;E) is Balanced

—

Case 1. When G has a perfect matching.

NIX
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Case 1. Perfectly Matchable
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DM-decomposition = Strg. Conn. Comps.
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Case 1. Perfectly Matchable
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... . Make it Strg. Conn.
DM-decomposition = Strg. Conn. Comps. — by Adding Edges

(

Obs.

DM-irreducibility is Equivalent to
Strong Connectivity of the Oriented Graph

\
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How to Make a Digraph Strongly Connected

Given G = (V,E): Directed Graph (): Strg. Conn. Comp.

O

Find Minimum Number of Additional Edges
to Make G Strongly Connected
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How to Make a Digraph Strongly Connected

Given G = (V,E): Directed Graph (): Strg. Conn. Comp.

Each Source needs an Entering Edge

O

Find Minimum Number of Additional Edges
to Make G Strongly Connected
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How to Make a Digraph Strongly Connected

Given G = (V,E): Directed Graph (): Strg. Conn. Comp.

Each Source needs an Entering Edge

Each needs a

Find Minimum Number of Additional Edges
to Make G Strongly Connected
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How to Make a Digraph Strongly Connected

Given G = (V,E): Directed Graph NOT Strg. Conn.

Find Minimum Number of Additional Edges
to Make G Strongly Connected

[Obs. max{# of Sources, # of } edges are Necessary.]

O
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How to Make a Digraph Strongly Connected

Given G = (V,E): Directed Graph NOT Strg. Conn.

Find Minimum Number of Additional Edges
to Make G Strongly Connected

[Obs. max{# of Sources, # of } edges are Necessary.]

<
Thm. max{# of Sources, # of } edges are Sufficient.

N One can find such Additional Edges in Linear Time. )

— Case 1 is Solved in Linear Time.
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Case Analysis

[ Assumption G = (V*,V~;E) is Balanced

Case 2. When G has NO perfect matching.




Case 2. NO Perfect Matching

- [Mlaximum Matching

DM-decomposition
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Case 2. NO Perfect Matching

DM-decomposition

- [Mlaximum Matching
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Case 2. NO Perfect Matching
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From the Viewpoint of Oriented Graphs
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From the Viewpoint of Oriented Graphs
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# of Additional Edges
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From the Viewpoint of Oriented Graphs

a )
Idea

N Connect to Reduce to Case 1 |

V| — |M| max{# of Sources, # of Sinks}
Const. # of Additional Edges Depending on M
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Sources and Sinks in Resulting Digraph
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Sources and Sinks in Resulting Digraph

VO‘\(: v

Choice of M Orientation Simplified
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Sources and Sinks in Resulting Digraph
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Sources and Sinks in Resulting Digraph

Want to Minimize
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Obs.
(# of Resulting Sources) = (# of Sources in V) + const.
L (# of ) = (# of ) + const.
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Sources and Sinks in Resulting Digraph

«— Want to Minimize
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(# of Sources in V) and (# of ) vary Indep.
X by choices of Perfect Matchings in G[V,] and G|V, ]. y
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How to Minimize (# of

4 )
Lem. (# of ) is NOT Minimized
X JEdge-disjoint Paths from 3() to 3 , )
[I.—K.—Y. 2016]
O: Exposed
. Sink
():Ss.Cc.C.
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<
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Summary of Case 2

Case 2. G has NO Perfect Matching

* Connect to Make Perfect Matching
— Reduce to Case 1

( OPT = max{# of Sources, # of } J

\ N

Vi
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Summary of Case 2

Case 2. G has NO Perfect Matching

* Connect to Make Perfect Matching
— Reduce to Case 1

[ OPT = max{# of Sources, # of } ]

* Minimize (# of Sources in V) and (# of ),
in Advance, by finding Edge-disjoint Paths repeatedly.
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Summary of Case 2

Case 2. G has NO Perfect Matching

* Connect to Make Perfect Matching
— Reduce to Case 1

[ OPT = max{# of Sources, # of } ]

* Minimize (# of Sources in V) and (# of ),
in Advance, by finding Edge-disjoint Paths repeatedly.

[ Thm. One can find an optimal solution by this strategy.]

— Constructive Proof for Min-Max Duality Y. 2010]
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e Conclusion

Outline
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Conclusion

* We propose a simple Polytime Algorithm
for finding a minimum number of Additional Edges
to make a Bipartite Graph DM-irreducible

* Our Algorithm is based on two elementary techniques:
— Find Edge-disjoint s—t Paths in a Directed Graph
— Make a Digraph Strongly Connected by Adding Edges

* The Halting Condition of Our Algorithm
implies Min-Max Duality extending
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