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(Non-bipartite) Maximum Matching

Given G = (V,E): Undirected Graph

Find Maximum Matching



(Non-bipartite) Maximum Matching

Given G = (V,E): Undirected Graph

Find Maximum[Matching] Edges
Not Sharing End Vertices
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A-paths and S-paths

G = (V, E): Undirected Graph
A € V: Terminal Set

A-paths o EA
e A




A-paths and S-paths

G = (V, E): Undirected Graph
A C V:Terminal Set
S=1{A4,A4A,,...,A;}: Partition of A

S-path o €A

o A
Az $ AZ




Mader’s Disjoint S-paths Problem

Given G = (V,E): Undirected Graph
A € V: Terminal Set, §: Partition of A4

Az
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Find Maximum Number of
Fully Vertex-Disjoint S-paths
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Mader’s Disjoint S-paths Problem

Find Maximum Number of
Fully Vertex-Disjoint S-paths

e Min-Max Formula

e Reduction to Matroid Matching
— Alternative Proof for Mader’s Theorem

— Polytime Solvability

— Improved via Linear Representation
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Packing Non-zero A-paths

G = (V,E): Group-Labeled Graph
A € V: Terminal Set Z-Labeled Graph
0 Z=1{0,41,+2,..}

Find
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Fully Vertex-Disjoint Non-zero A-paths
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Packing Non-zero A-paths
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Given

S-path

Ex. 1 Mader’s S-paths

G = (V,E): Undirected Graph
A € V: Terminal Set, §: Partition of A4
A

NOT S-path

Maximum Number of
Fully Vertex-Disjoint S-paths
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Find

Ex. 1 Mader’s S-paths

G = (V,E): Group-Labeled Graph
A € V: Terminal Set Z-Labeled Graph
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O
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Given

Ex. 1 Mader’s S-paths

G = (V,E): Group-Labeled Graph
A € V: Terminal Set Z-Labeled Graph
Ay N2 Z ={0,+1,+2,..}
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Ex. 1 Mader’s S-paths

Given G = (V,E): Group-Labeled Graph
A C V: Terminal Set Z-Labeled Graph
4,

Z=1{0+1,42, ..}
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Given

Ex. 1 Mader’s S-paths

G = (V,E): Group-Labeled Graph
A € V: Terminal Set Z-Labeled Graph
AZ ::.n--.u.‘: 2 Z — {0’ ily iz’ }

*
*
*
*
*
*
*
L
*
.
*
L
*
*
.
*
*
*
‘0
*

O€eA
@czA

.
)
.

Maximum Number of

Fully Vertex-Disjoint Non-zero A-paths

33



Ex. 1 Mader’s S-paths

Given G = (V,E): Group-Labeled Graph
A € V: Terminal Set Z-Labeled Graph
AZ ::.“--.u.‘: 2 Z — {0’ ily iz’ }
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Ex. 2 Odd-Length A-paths

Given G = (V,E): Group-Labeled Graph
A C V: Terminal Set Z,-Labeled Graph
1 Z, = {0,1} (mod 2)

Find Maximum Number of
Fully Vertex-Disjoint Non-zero A-paths
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Ex. 2 Odd-Length A-paths

Given G = (V,E): Group-Labeled Graph
A C V: Terminal Set Z,-Labeled Graph
Z, ={0,1} (mod 2)

Odd-Length

Find Maximum Number of 2
Fully Vertex-Disjoint Non-zero A-paths
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Packing Non-zero A-paths

Find Maximum Number of Fully Vertex-Disjoint

Non-zero A-paths

e Min-Max Formula

* Polytime Algorithm
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Packing Non-zero A-paths

Find Maximum Number of Fully Vertex-Disjoint
Non-zero A-paths

e Min-Max Formula

* Polytime Algorithm

 Reduction to Matroid Matching [Tanigawa, Y. 2015]
— Alternative Proofs for Min-Max and Polytime
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Matroid Matching Problem

Given G = (V,E): Undirected Graph
M = (V,Z): Matroid on Vertex Set

Find Maximum Matching with Matroid Constraint
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Given

Find

Matroid Matching Problem

G = (V,E): Undirected Graph
M = (V,Z): Matroid on Vertex Set

Z < 2V (Family of Independent Sets)

e Qe
e XCYeL = XeL

 X,Y €7 and |X| < |Y]|
= AveY\Xst. X+vel

Maximum Matching with Matroid Constraint
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Matroid Matching Problem

Given G = (V,E): Undirected Graph
M = (V,Z): Matroid on Vertex Set

{Olel

Find Maximum Matching with Matroid Constraint
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Matroid Matching Problem

Given G = (V,E): Undirected Graph
M = (V,Z): Matroid on Vertex Set

Find Maximum Matching

M = (V,2"): Free Matroid = Maximum Matching
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Matroid Matching Problem

Given (S, f): 2-polymatroid
ﬁdef

S: Finite Set, f:2°> - Z
* 0 < f(X) <2|X] (XcS)
* fX) = f(Y) XcYcs)

*fO+fY)=fXUY)+fXNY)
(X, Y €95)

Find Maximum Matching
X € S with f(X) = 2|X]|
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Matroid Matching Problem

Given
Find

(S, f): 2-polymatroid
Maximum Matching

* In General, NOT Polytime Solvable
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Matroid Matching Problem

Given (S, f): 2-polymatroid

Find

Maximum Matching

* In General, NOT Polytime Solvable

* In Linear Case (or More General Case)

— Min-Max Formula

— Polytime Solvable

o(mt7)?

O(mn3) (Combinatorial)
O(mn?) (Algebraic, w.h.p.)

f(X) =rank =

X

N | \

X

ﬁ

S
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Reduction Flow

Packing Matroid
Non-zero A-paths Matching

W (S, f): 2-polymatroid

‘l' Solve Solve

— XCS
with
~\ FOX) = 21X]

N G—
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Reduction Flow

Non -zero A-paths Matching

— (S, f): 2-polymatroid
Construct

O\O X
O\/\) Reconstruct with
fX) = 2[X|

Packing ] REdUCEE [ Matroid }
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Reduction Flow
Packing Reduce Matroid
Non-zero A-paths : Matching

—_— (S, f): 2-polymatroid

Construct

?
O\O How: ¥

R ——

O\/\) Reconstruct with
f(X) = 2|X]

50



Our 2-polymatroid

e We want a Subgraph

<€

O\/\) Reconstruct _ with
fX) = 2|X|
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Our 2-polymatroid

e We want a Subgraph — S := E (Edge Set)

<€

O\/\) Reconstruct _ _ Wwith
f(X) = 2|X]|

O\>¥O\'\o
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Our 2-polymatroid

* We want a Subgraph — S :=FE (Edge Set)

<€

0\/\) Reconstruct _ with
fX) = 2|X|

* We want Easy Reconstruction

N




Our 2-polymatroid

* We want a Subgraph — S :=FE (Edge Set)

<€

0\/\) Reconstruct _ with
fX) = 2|X|

* We want E dasy Reconstruction

‘é’ ‘\TC\.'XN“ 10 = f(X) =2(X]

: Forest
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Key Concept in Our Reduction

[ Frame Matroid ]

/generallzetcN

Cycle I\/Iatr0|d B|C|rcular Matr0|d

2R i@m




Key Concept in Our Reduction

[ Frame Matroid ]

e Extends to 2-polymatroid

* Magic for Terminals

‘é’ 'YC\'X”“ 10 = f0) =2(X]

. Forest

56



Maximal Matching

W2 A
GIXI o)

f&X) = 2|X|

‘11’ '\TC\.'KN“ €0 = f(X) = 21X

. Forest
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Maximal Matching

............... Assume
TO\. ................ e

GlX] .\I fX) = 2|x|

'11’ .\TC\,'KN” O e f0) =20x]

. Forest
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Maximal Matching

Assume
; } G: Connected
GlX + e]

f(X+e)=2|X+e]

‘11’ '\TC\.'KN“ €0 = f(X) = 21X

. Forest
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Maximal Matching

Assume
; } G: Connected
GlX + e]

f(X+e)=2|X+e]

G: Connected

X: Maximal
'\TC\.'KN“ €0 = f(X) = 21X

. Forest
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Maximum Matching

X: Maximal

f&X) = 2|X]

= |X| =

cf. G' = (V',E"): Tree
U
B = V'] -1

G: Connected

. Forest

X: Maximal
‘é’ 'YC\'X”“ 10 = f0) =2(X]

V| — #(Connected Components)
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Maximum Matching

X: Maximal

f&x) =2lx| —

= |X]| =

2 NV

— #(Connected Components)

G: Connected

. Forest

X: Maximal
< f(X) =2]X|

— #(Non-zero A-paths)
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Maximum Matching

X: Maximal
f(X) = 2|X|

|
|l
|A| — #(Non-zero A-paths)
; \‘ 'ﬂNon-zero

G: Connected

X: Maximal
'11’ \\C\.'ﬂ"'”‘ e fO0 =20X]

. Forest

= |X| = |V| — #(Connected Components)
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Maximum Matching

X: Maximal

f&X) = 2|X]

= |X| =

V] —

|A| + #(Non-zero A-paths)

G: Connected

. Forest

X: Maximal

‘i 'YC\.'X”“ ©r0 o f(x) = 20|
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Maximum Matching

X: Maximal
' = | X| = V| — |A| + #(Non-zero A-paths
l Fixed l
Maximized Maximized
G: Connected
X: Maximal

. Forest

o fX) =2lx|
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Conclusion

Packing Non-zero A-paths reduces to Matroid Matching

e Extends Lovasz’s Reduction
of Mader’s S-paths Problem to Matroid Matching

e Alternative Proof for Min-Max Formula

* Alternative Polytime Algorithm via Matroid Matching

(cf. Faster Algorithms via Linear Matroid Parity
under Representability Cond. for Group)
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Min-Max Formula for Non-zero A-paths

4 )
u(G,A) = max #(Disjoint Non-zero A-paths in )

L fi(G,A) = max #(Disjoint A-paths in G)

J

u(G,A) < i(G = F,Ap)

« € E(G) Contains NO Non-zero A-paths
e Ap = AUV(F)

F
N - AT

G, A G—F,Ar
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Min-Max Formula for Non-zero A-paths

(

L fi(G,A) = max #(Disjoint A-paths in G)

~
u(G,A) = max #(Disjoint Non-zero A-paths in )

J

u(G,A) = g(G — F,Ap)
« € E(G) Contains NO Non-zero A-paths
e Ap = AUV(F)
Ar-path
Non-zero

O\_j\\oA-path ° 5 J\o o

G, A G—F,Ar
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Min-Max Formula for Non-zero A-paths

4 )
u(G,A) = max #(Disjoint Non-zero A-paths in )

g fi(G,A) = max #(Disjoint A-paths in G) )

u(G,A) < (G — F, Ap)
<G —-F—-X,Ap\ X) + [X|

« € E(G) Contains NO Non-zero A-paths
¢ AF = A U V(F) m
e X CV(G) H

NS 0

G _F,AF
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Min-Max Formula for Non-zero A-paths

4 )
u(G,A) = max #(Disjoint Non-zero A-paths in )

g fi(G,A) = max #(Disjoint A-paths in G) )

u(G,A) < (G — F, Ap)
<G —-F—-X,Ap\ X) + [X|

« € E(G) Contains NO Non-zero A-paths
e Ap = AUV(F)
« X € V(G)

oD,

G _F,AF
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Min-Max Formula for Non-zero A-paths

(

L fi(G,A) = max #(Disjoint A-paths in G)

~
u(G,A) = max #(Disjoint Non-zero A-paths in )

J

u(G,A) < p(G — F,Ap)

<G —F—X, Ap \ X) + |X]

[V(H)NAF|
< ZHEcomp(G—F—X) { 2 -

« [ € E(G) Contains NO Non-zero A-pat

+ | X]

NS

¢ AF =AU V(F) '®)
« X CV(G) &J{/}) H: Conn. Comp.
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Min-Max Formula for Non-zero A-paths

[ u(G,A) = max #(Disjoint Non-zero A-paths in ) ]

4 )
Thm.
[W(H) N Ag|
2

u(G,A) = min Z + | X|

F,X
Hecomp(G—-F-X)

« F € E(G) Contains NO Non-zero A-paths
¢ AF = A U V(F)

« X CV(G)
\_ J
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