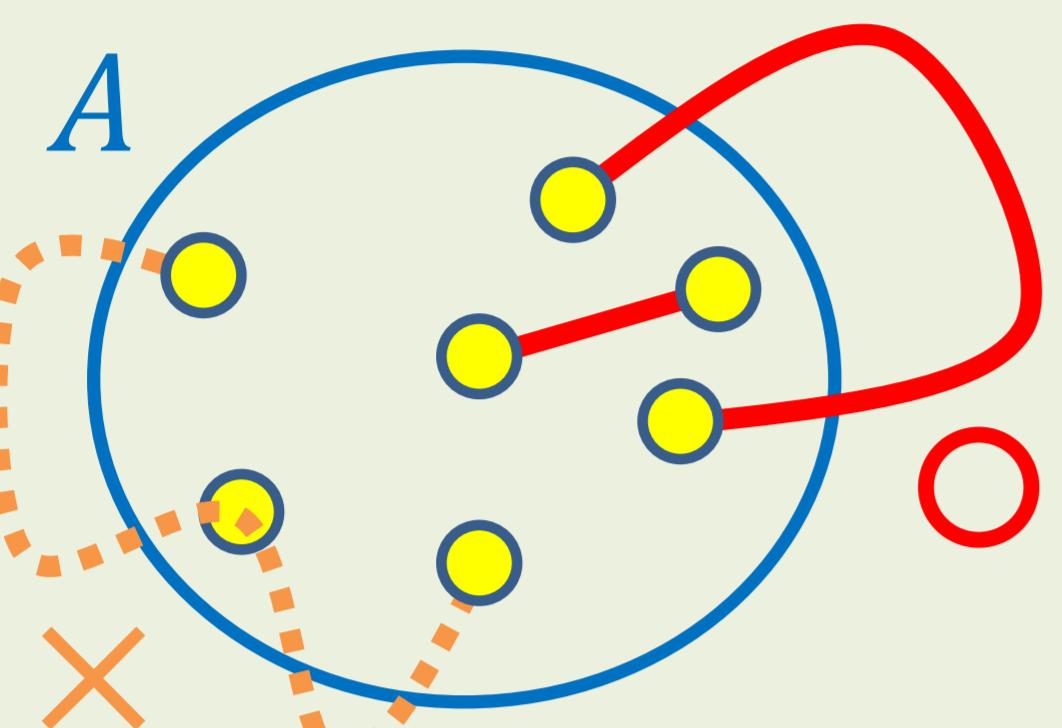


Packing A -paths in Group-Labeled Graphs via Linear Matroid Parity

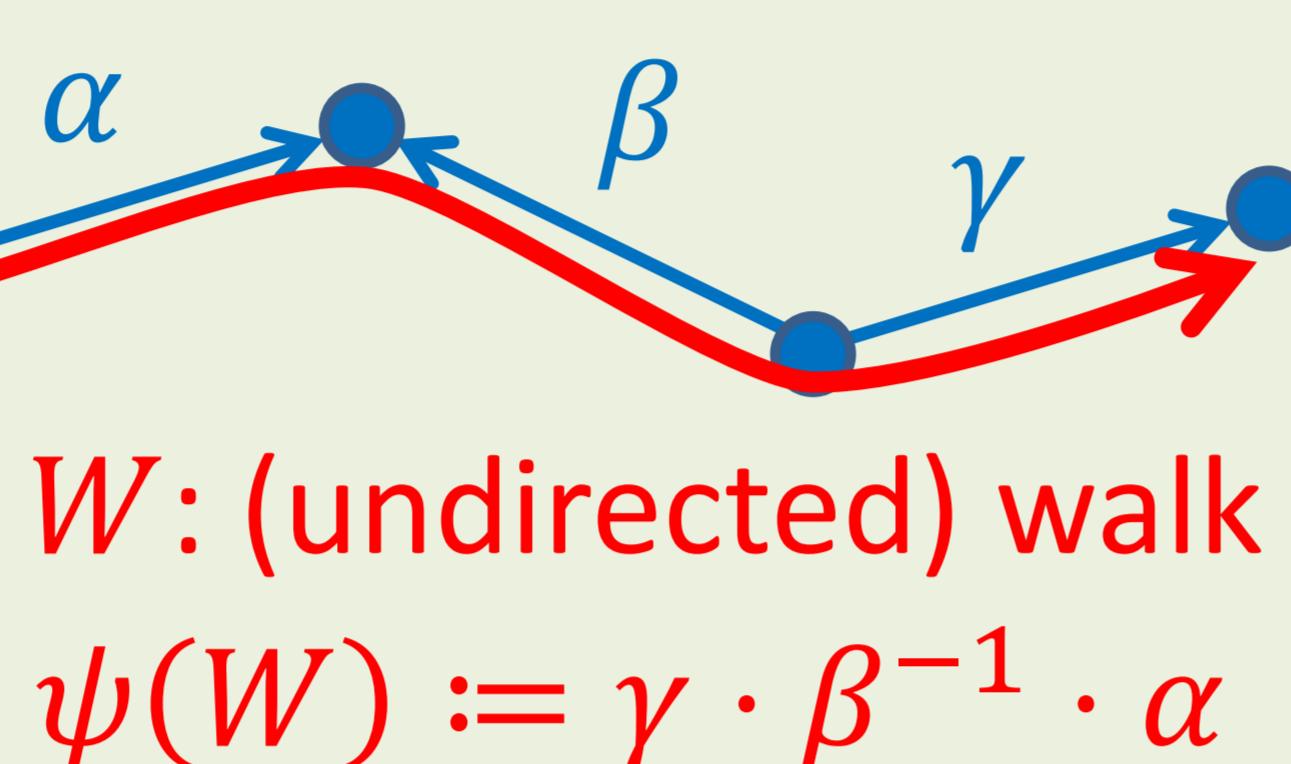
Yutaro Yamaguchi (University of Tokyo)

1. Packing A -paths in Group-Labeled Graphs

Paths **between** $A \subseteq V$
NOT through A



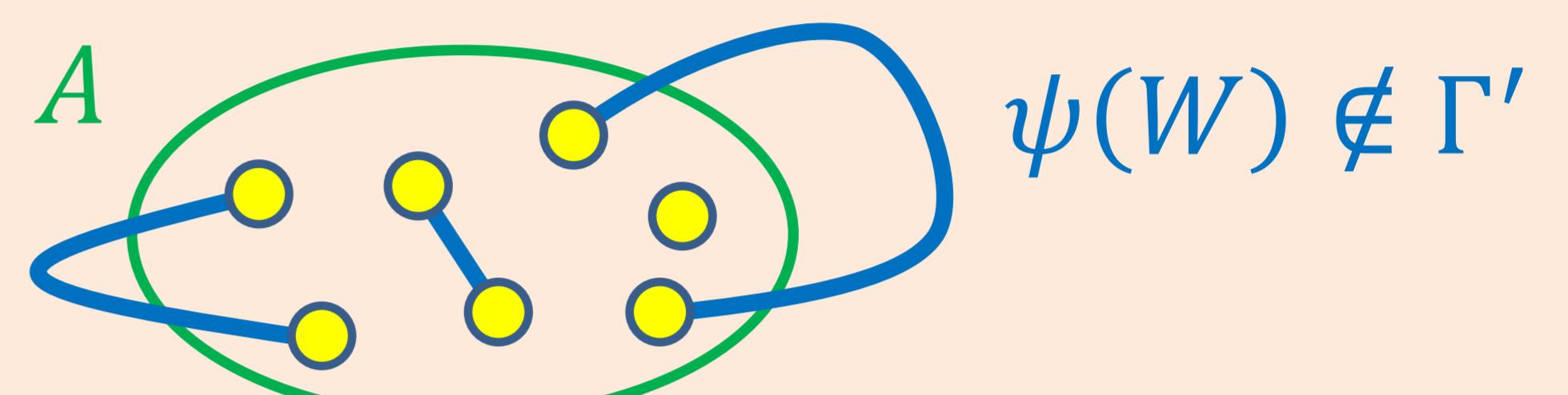
$G = (V, E)$: directed graph
 $\psi: E \rightarrow \Gamma$ (Γ : group)



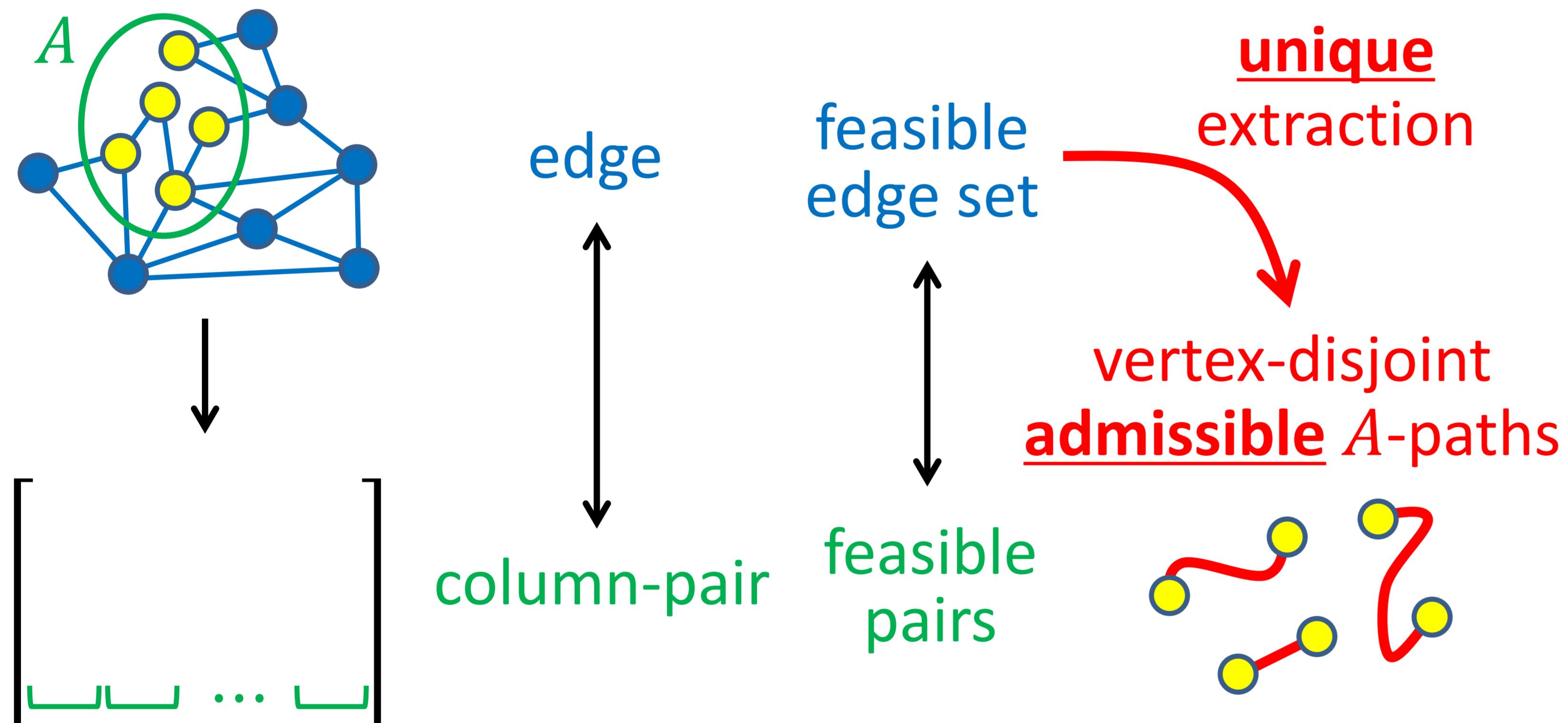
[Problem 1] Subgroup Model

Input: (G, ψ) : Γ -labeled graph
 $A \subseteq V(G)$: terminal set
 Γ' : proper **subgroup** of Γ

Find: a maximum family of vertex-disjoint **admissible** A -paths



2. Reduction to Linear Matroid Parity (L.M.P.)



[Problem 2] Linear Matroid Parity

Input: a matrix in $\mathbf{F}^{n \times 2m}$ (\mathbf{F} : field) with **pairing of the columns**

Find: a maximum family of pairs with **the linear independence**

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

3. Main Theorem

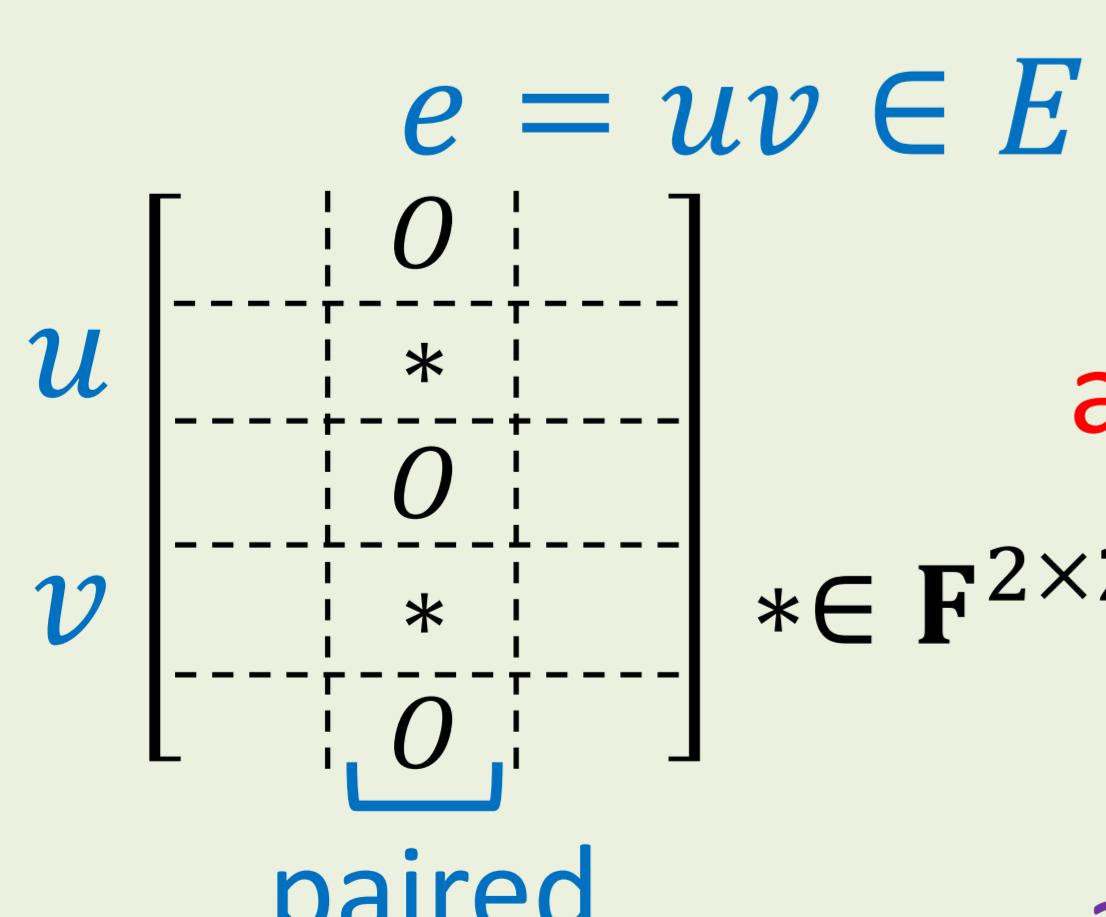
Γ : group, Γ' : subgroup of Γ , \mathbf{F} : field

$\exists \rho: \Gamma \rightarrow \mathrm{PGL}(2, \mathbf{F})$ homomorphic
 $\exists Y$: 1-dimentional subspace of \mathbf{F}^2
s.t. $\Gamma' = \{ \alpha \in \Gamma \mid \rho(\alpha)Y = Y \}$

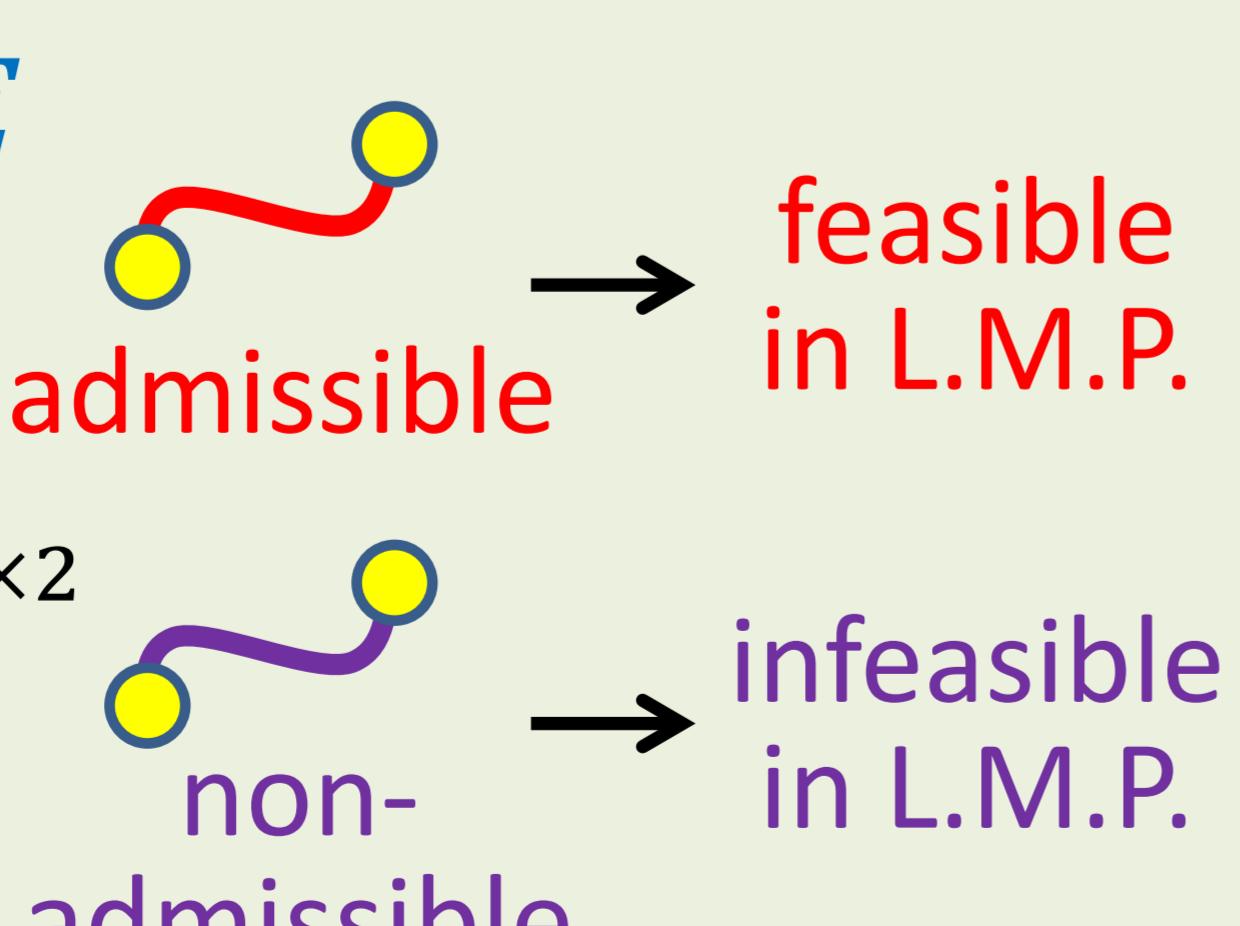
\Updownarrow

Subgroup model reduces to L.M.P.
with **coherent representation** over \mathbf{F} .

(i) Based on **incidence matrix**.



(ii) Correspondence of **feasibility**.

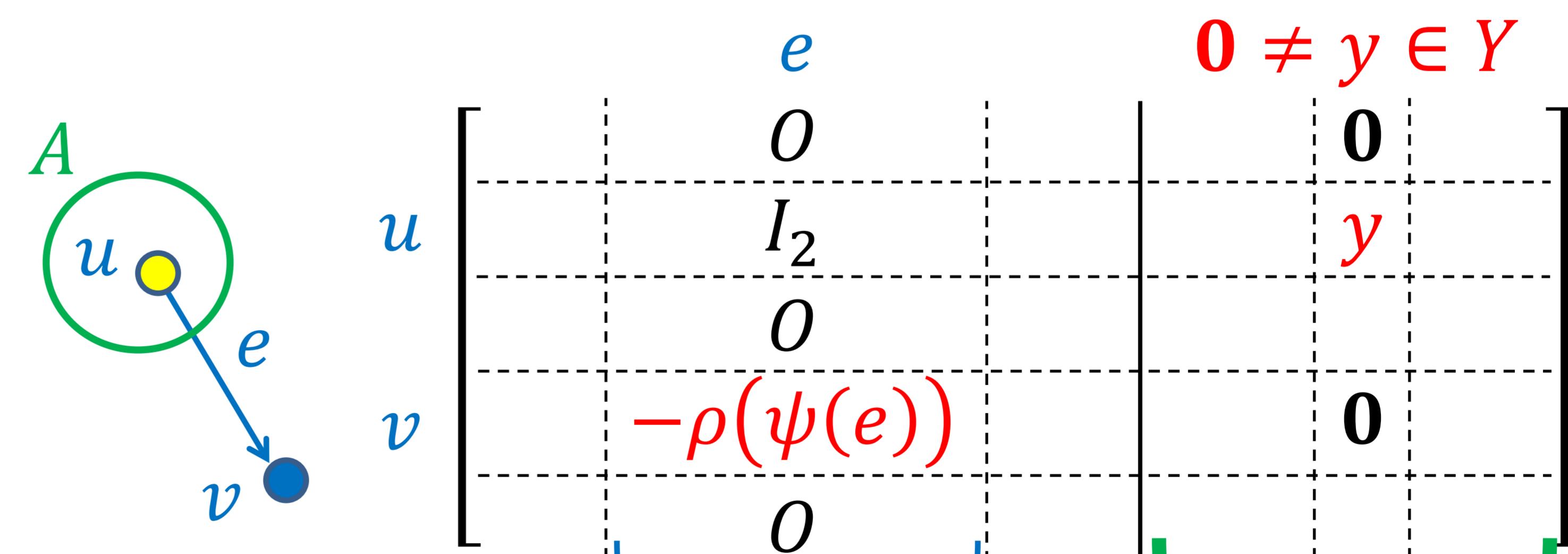


How to Construct a Matrix

$\mathrm{GL}(n, \mathbf{F})$: the set of nonsingular $n \times n$ matrices over \mathbf{F}

$\mathrm{PGL}(n, \mathbf{F}) := \mathrm{GL}(n, \mathbf{F}) / \{ kI_n \mid k \in \mathbf{F} \}$

ρ : **projective representation** of Γ with Y **fixed** w.r.t. Γ'



Observation

Eliminate in advance. \Updownarrow **Begin with these.**

