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Set Functions

|
Functions on set families

e IV: finite set (ground set)
e DC 2V ={X | X CV}: family of subsets (domain)

* R:set of values (codomain)

[ f:D — Ris called a set function. ]

*We assume R =R ={r | r:real }.

* We assume D = 2V, unless any notice.
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Hypergraphs

: G lized
Undirected graph SheraeEs, Hypergraph

edge © hyperedge
of size 2

hyperedge

Each hyperedge connects
an arbitrary number of vertices.
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Each edge connects two vertices.



Hypergraphs

e I/: finite set (vertex set)

« £C 2Y: family of subsets (hyperedge set)
[ H = (V,E) is called a hypergraph. J
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Hypernetworks

e I/: finite set (vertex set)

« £C 2Y: family of subsets (hyperedge set)
[ H = (V,E) is called a hypergraph. J

* c: £ — R, real-valued set function (capacity function)

[ N = (H, ¢) is called a hypernetwork. ]
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Cut Capacity

N=(H=,E),c): hypernetwork

\_

The cut capacity function x,: 2" - R

ey (X) = Z{C(E) |ENX#0#E\X}

EEE

J

Ky (X) = —1 .

X °
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Symmetry of Cut Capacity

N=H=(V,E),c): hypernetwork

K, Is symmetric, i.e.,
Ky(X) =k (V\NX) (XCEV)
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Today's Talk

N=(H=,E),c): hypernetwork
The cut capacity function k,: 2V — R is a set function.

* Which set functions can be realized as cut capacity?

* When possible, how can we realize them?
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Today's Talk

N=(H=,E),c): hypernetwork

The cut capacity function k,: 2V — R is a set function.

Which set functions can be realized as cut capacity?

— Essentially ALL symmetric set functions!
— Submodularity is far from sufficient when ¢ = 0.

* When possible, how can we realize them?

— We give several standard forms of hypergraphs
by restricting available hyperedges.

17



Overview

Symmetric Set Functions

Essentially

H h
ypergrap NO gap

Cut Capacity

Undirected Graph
Cut Capacity

g
f(@) =0, Order < 2

18



Realizability by Hypergraph

-~

&

f:2" > R, symmetric

f is realizable as the cut cap. func. of a hypernetwork.

~

J

KK (@) =

[Y. 2015]?

19



Realizability by Hypergraph

-~

&

f:2" > R, symmetric

f is realizable as the cut cap. func. of a hypernetwork.

~

J

KK (@) =

20



Realizability by Hypergraph

-

&

f:2" > R, symmetric

f is realizable as the cut cap. func. of a hypernetwork
with hyperedges of size at most k.

()
f(@) =0,

f is of order at most k.

~

J

[Y. 2015]

Extends the case of undirected graphs

(i.e., kK = 2)
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<

Undirected Graph ™\
Cut Capacity

g
f(@) =0, Order < 2
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Overview

Symmetric Submodular Functions

Nonnegative
Hypergraph

LARGE
Cut Capacity gep

Nonnegative
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g
f(@) =0, Order < 2
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Realizability by Hypergraph

-

f:2Y - R, symmetric, submodular

f is realizable as the cut capacity function
of a nonnegative hypernetwork. (VE € £, c(E) = 0)

U A
f(@) = 0.

~

3 Counterexample with |V| = 4 for |
LARGE Gap!
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Realizability by Hypergraph

-

N\

f:2Y - R, symmetric, submodular

f is realizable as the cut capacity function

of a nonnegative hypernetwork. (VE € £, c(E) = 0)

U #
f(@) =0,

NEW!

the even-order terms of f are nonpositive,

the odd-order terms of f are nonnegative.

~

J

3 Counterexample with |V| = 5 for
Still LARGE Gap!!

[Y. 2015]
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Put nonnegativity aside ...
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Redundancy of Hypergraph Realization

-

&

f:2Y > R, symmetric

f is realizable as the cut cap. func. of a hypernetwork.

0
f(®) =o0.

~

J

(Reminder)

—{FeRY | f@) =0, fOO)=fW\X) (WX 1))

N=H =V, E),c): hypernetwork (c S Rg)
l

dimF=2Y"1 —1, dimR¢ = |&| < 2!V
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Non-Redundant Hypergraphs?

F

N=(H=,E),c): hypernetwork

dim F=2VI-1 — 1 = || = dimR¢
U

[feRY [f@ =0, fX)=fV\X) (vx<1)}

The linear mapping ¢ = K, (Rg — ]—“) can be bijective.

-

\_

The cut capacity function k,: 2" - R

ey (X) = Z{C(E) ENX#0#E\X}

EEE

~

J

(Reminder)
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F

Standard Form 1 (Rooted)

[feRY [f@ =0, fX)=fV\X) (vx<1)}
N=(H=,E),c): hypernetwork
relV, E={X|reXcV, |X|=2}

)
dim F=2VI-1 — 1 = || = dimR¢

"X€EE © Q#FAZCV—rst. X=Z+r
#(choices of Z) =2V-rl —1
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Standard Form 1 (Rooted)

F={feR"|f(@) =0, f()=fW\X) (VXSV}
N=(H=,E),c): hypernetwork
reV, E={X|reXcV, |X|=2}
U
dim F =2lVI-1 — 1 = || = dimR¢
C sev.e={XlrexcvV |X|>2}
U

The linear mapping ¢ & kK, (Rg - ]—") is bijective.

[Y. 2015]



F

Standard Form 2 (Even-size)

[feRY [f@ =0, fX)=fV\X) (vx<1)}
N=(H=,E),c): hypernetwork
V0, E={X|0#XCV, |X|:even}

)
dim F=2VI-1 — 1 = || = dimR¢

vl = A+DVI+@a-DVl = z (1 + (—1)|X|)

Xcv
=2(lXcV||X]|:even} =2(JE| + 1)
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Standard Form 2 (Even-size)

F={feR” |[f(@® =0, fX)=fV\X) (VX<V}
N=(H=,E),c): hypernetwork
V0 E={X10+XCSV, |X|:even}
J
dim F = 2VI-1 — 1 = |£| = dimR?

: V0 E={X10+XCV, |X|:even} A

J
The linear mapping ¢ & kK, (Rg - ]—") is bijective.

Alternative Proof by [Y. 2015] 33



F

Standard Form 3 (Majority)

[feRY [f@ =0, fX)=fV\X) (vx<1)}
N=H=,E\{E}),c): hypernetwork
Vlodd, e ={xcVvI|[Z <ixi<vI} Eee

J
dim F=2VI-1 —1 = || — 1 = dim RE\{E}

T XCV, Xef o V\Xg€
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Standard Form 3 (Majority)

F={f R |[f(@® =0, f(X)=fV\X) (vX<V)}
N=H=,E\{E}),c): hypernetwork
VIodd, e ={xcvI|[Z|<ixi<vI} Eec
U
dim F=2VI-1 —1 = || — 1 = dim RE\{E}

4 )
Vlodd, e ={xcVI|[Z<ixI<IVI}, Eee
U
\The linear mapping ¢ & K, (Rg\{E} — .7-") IS bijective./

[Y. 2015] 35



How to see the correctness?
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Rooted Standard Forms (Reminder)

F={feR”|f@®) =0, fX)=fW\X) (VKEV)]
N=H =V, E),c): hypernetwork
reV, E={X|reXcV, |X|=2}

y
dim F=2VI-1 — 1 = || = dimR¢
C oy ev. E={XlrexcV X|>2}
y

The linear mapping ¢ & kK, (Rg - ]—") is bijective.

[Y. 2015]



Correctness of Rooted Standard Forms

k@) 1 r1 1 1 1 11 <)

Ky {1, v1}) 1 0 1 - 1 - 1] c{{r,v}
v ({r, v, ) 1 1 0 1 1|l c({r,vy})
Ky (A, ;Jl,vz}) 1 0 0 o - 1 c({r, v.l,vz})
_ KN(V.— v) | L1 1t 0 - 1 - ol c(V.—vl) _
C oy ev. E={XlrexcV X|>2}
U

The linear mapping ¢ & kK, (Rg - ]—") is bijective.

[Y. 2015]
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Correctness of Rooted Standard Forms

S e oy Sy

v | 1)1 0 1 1| elnvd

cetroud| 1) 0 0 0w 1|

_KN(VE—vl)_ |1 1 0 - 1 (:)-_C(V:—vl)_

C oy ev. E={XlrexcV X|>2}
U

The linear mapping ¢ & kK, (Rg - ]—") is bijective.

[Y. 2015]
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Correctness of Rooted Standard Forms

v@rd) 1 r1 11 1 1 c(V)

Ky ({7, V1)) 1 0 1 1 1|l c{r,vi})
v ({r, v, ) 1 1 0 1 1|l c({r,vy})
Ky (A, .vl, V5 }) 1 0 0 0o - 1 c({r, v.l, v, })
ke —v) | L1 1 0 - 1 -« ol covovy
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Correctness of Rooted Standard Forms

@) ] r1o1 1 1 1[ ...V
K ({7, v1}) 1 {0} 1 1 1|[..c({r, vi})..
i ({r, v, ) 1 1 0 1 || c{r v}
Ky (A, .vl, V5 }) 1 0 0 0o - 1 c({r, v.l, v, })
e W=v) ]l L1 1 0 1 ol cw—vp
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Correctness of Rooted Standard Forms

k@) 1 r1 1 1 1 1 c(V)
Ky {1, v1}) 1 0 1 1 1| c{r,vi})
v ({r, v, ) 1 1 0 1 1|l c({r,vy})

-------------------------

. ]

.® .
e

Kn ({T, V1, UZ}) 1 0 0 U 0 e 1 C ({T, U1,V }) ;

ke W=-v) )l 110 1 ol cv-vy) |
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Correctness of Rooted Standard Forms

ky{rd) 1 1 M cV)
K ({r, v1}) | c({r,v1})
Ky ({7”: V2}) 1 c({r,v2})
: = 0 :
e vnod| | c({r, vy, v,))
: k :
Kk (V—vy) | | L c(V—vy) |
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Correctness of Rooted Standard Forms
—1

—
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Correctness of Rooted Standard Forms

1

X

Nonsingular
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Even Standard Forms (Reminder)

F={feR’|[f(®) =0, fX)=fW\X) (vXcV)}

N=(H=,E),c): hypernetwork
V0 E={X10+XCSV, |X|:even}

)
dim F=2VI-1 — 1 = || = dimR¢

-

V0 E={X10+XCV, |X|:even} A

J
The linear mapping ¢ & kK, (Rg - ]—") is bijective.

Alternative Proof by [Y. 2015]



Odd-size Hyperedges

~

\_

For k € Z-,, any hyperedge of size 2k + 1
can be replaced by ones of size 2,4, ..., 2k.

~

J

[Y. 2015]
ex.k =2

ﬁ
|l
N
.
|l
|
—_
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Odd-size Hyperedges

~

For k € Z-,, any hyperedge of size 2k + 1

~
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Conclusion

* Any symmetric real-valued set function f with /(@) = 0
can be realized as cut capacity of a hypergraph.

(Extends the case of undirected graphs )

* We give three types of hyperedge sets
consisting bases for cut realization as standard forms.

(with a fixed root, even-size, majorities without any one)

* For the case when the capacity function is nonnegative,

sufficient conditions are still OPEN ...
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Properties of Cut Capacity Functions

N=FH=V,E),c): hypernetwork

* K, IS symmetric, i.e.,
Ky(X) =k (V\NX) (XCEV)

e c:£ - Risnonnegative (VE € &, ¢c(E) = 0)
= K, is submodular, i.e.,

KN(X) + KN(Y) = KN(X U Y) + KN(X N Y)
(X,Y S V)
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From the Viewpoint of Minimization
4 )

f:2V > R, symmetric and submodular

X* € argmin f(X)
X:0+XcV

can be found in O(|V[3EO) time (EO: eval. cost of f) y

&

* Generalizes minimum-cut algorithms for
— undirected graphs and
— hypergraphs

* Solved by repeated general submodular minimizations,

requiring O(JV[°EO + |V|®) time per once N



From the Viewpoint of Minimization

a f:2V > R, symmetric and submodular A
X* € argmin f(X)
X:Q#XcCV
can be found in O(|V[3EO) time (EO: eval. cost of f)

N\ _/
* Generalizes minimum-cut algorithms for

— undirected graphs and

— hypergraphs

— How close the set of cut capacity functions is
to the set of symmetric submodular functions?
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Order of Set Function

/‘v’f: 2V > R, 3!'F € R[x, | v € V]: polynomial s.t. \

F(1y) = f(X) (X € V),and
F(x) = 2 axl_[xv (x =(x, |V E V))
\ XCV  vex /

* (Theorderof f) :=degF = r)r(lcag{le | ay # 0}.

* ay: |X|-th order term
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Odd(Even)-Order Terms of Cut Cap.

/N= (H = (V,E), c): hypernetwork A
f > {c(B) X cF) (1X]: odd)
E€E
aX —_ <
— (ZC(X) + Z{C(E) | X C E}) (|X]: even)
\
\ Ee& /
[Y. 2015]
F(1x) = kn(X) (X € V), and

F(x) = 2 axl_[xv (x= (x, | vEV))

XCV veX 56
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