

Realizing Symmetric Set Functions as Hypergraph Cut Capacity

Yutaro Yamaguchi

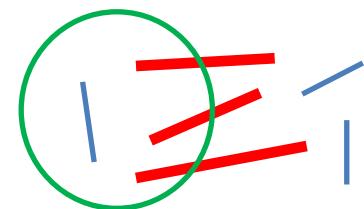
Department of Mathematical Informatics
University of Tokyo

HJ2015, Fukuoka June 3, 2015

Background

Symmetric Submodular Functions

Nonnegative
Undirected Graph
Cut Capacity



Background

$$f(X) = f(V \setminus X)$$

Symmetric Submodular Functions

$$f(X) + f(Y) \geq f(X \cup Y) + f(X \cap Y)$$

Nonnegative
Undirected Graph
Cut Capacity

Background

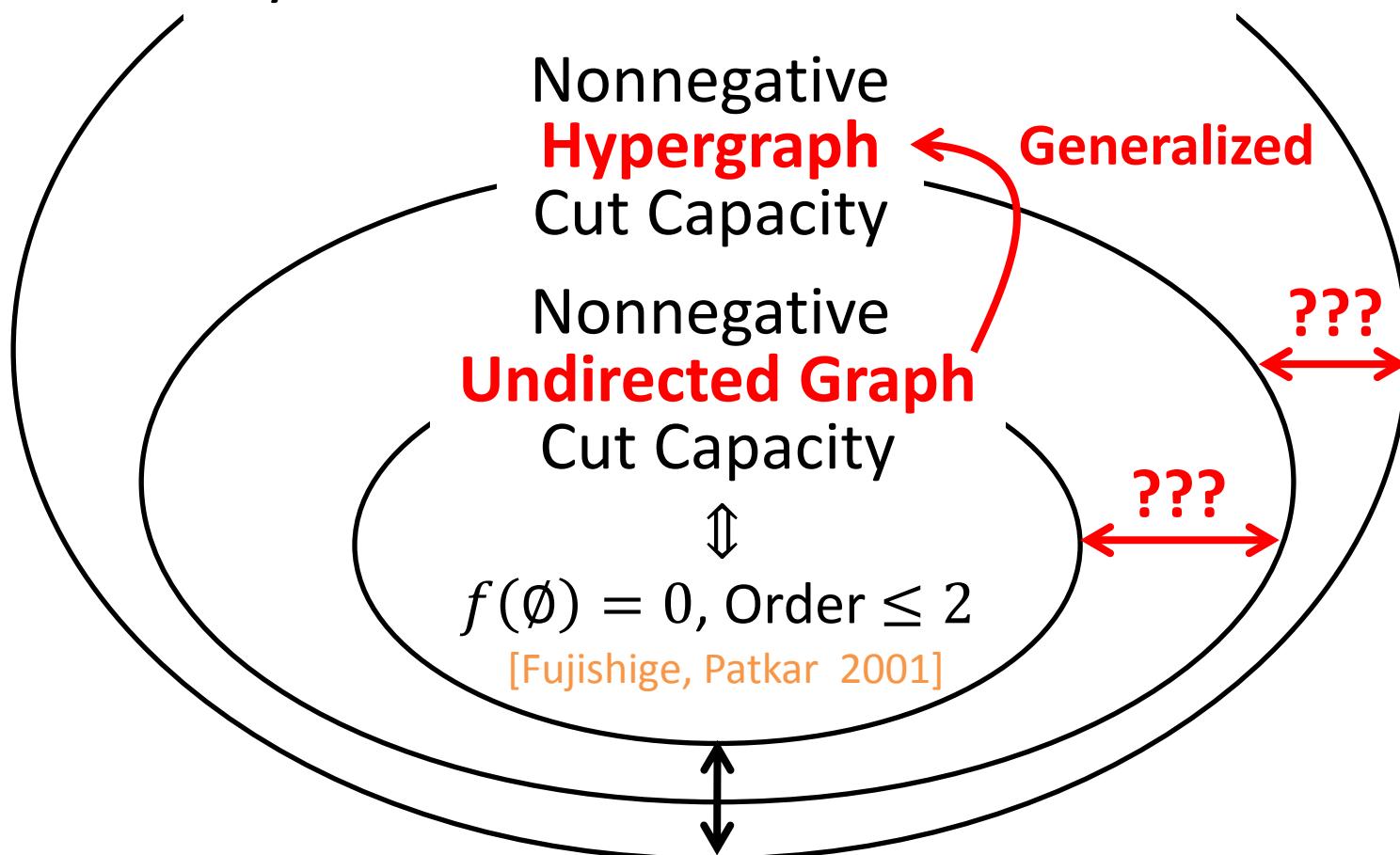
Symmetric Submodular Functions

Nonnegative
Undirected Graph
Cut Capacity

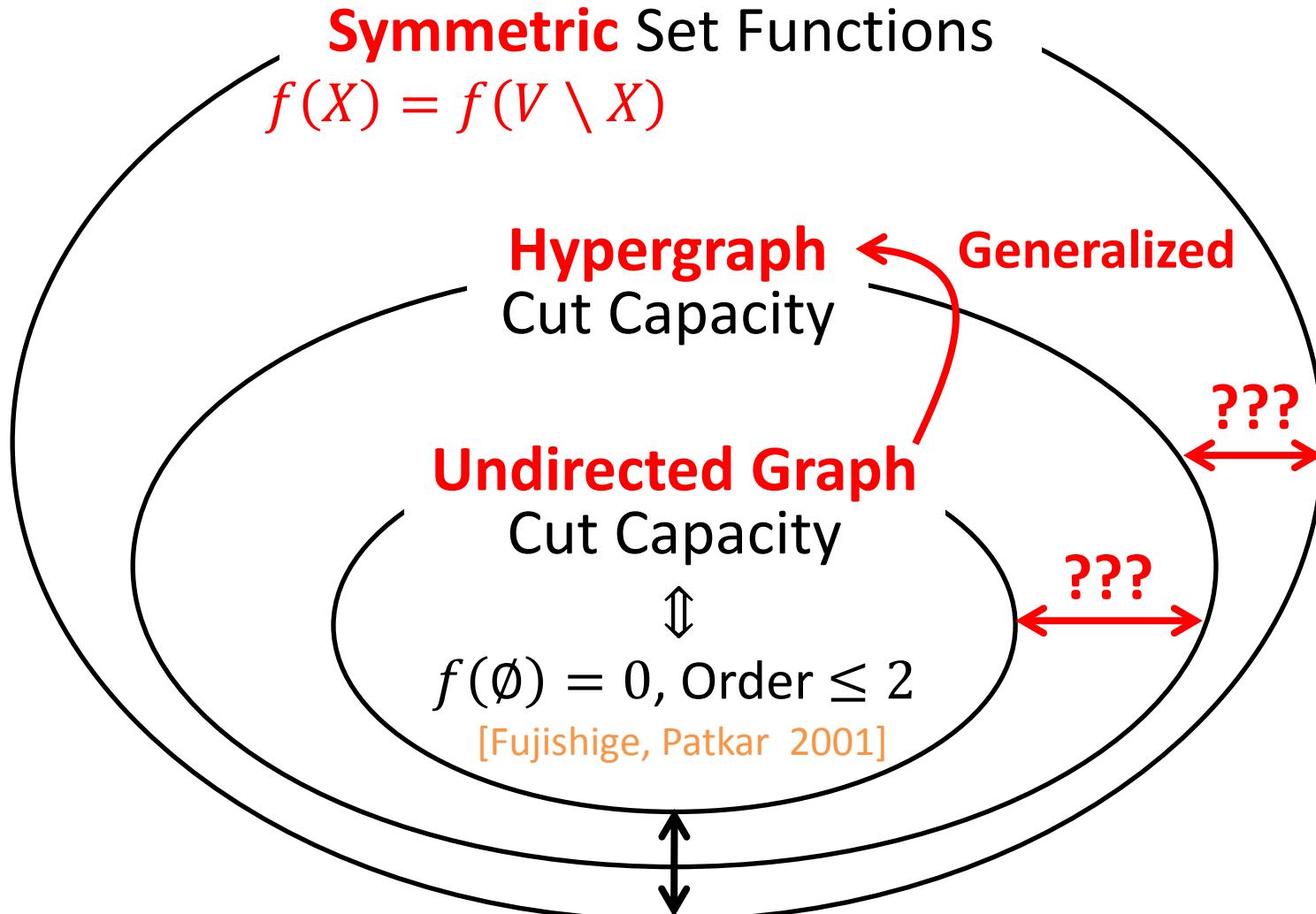
$f(\emptyset) = 0$, Order ≤ 2
[Fujishige, Patkar 2001]

Background

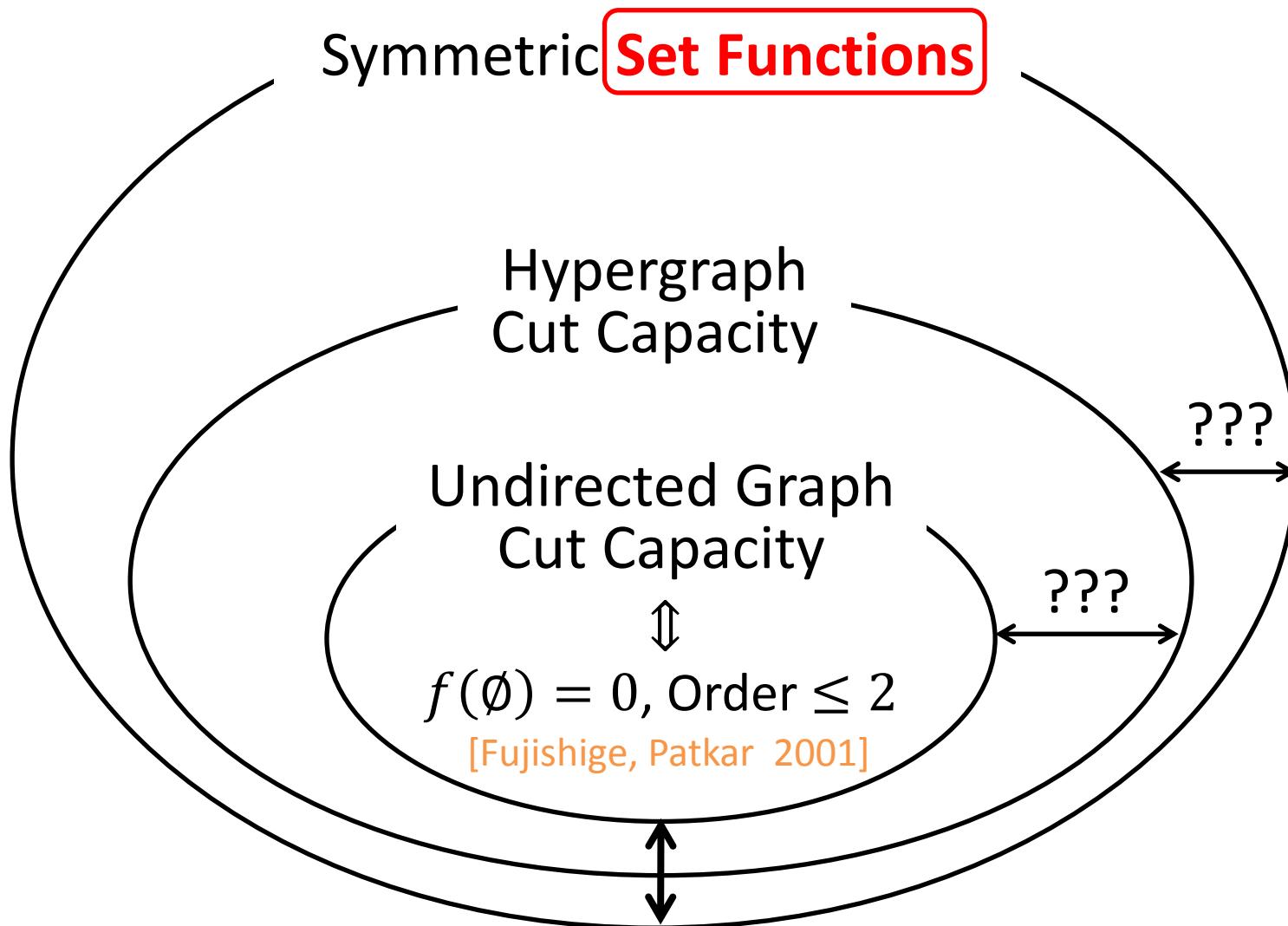
Symmetric Submodular Functions



Background



Background



Set Functions

||

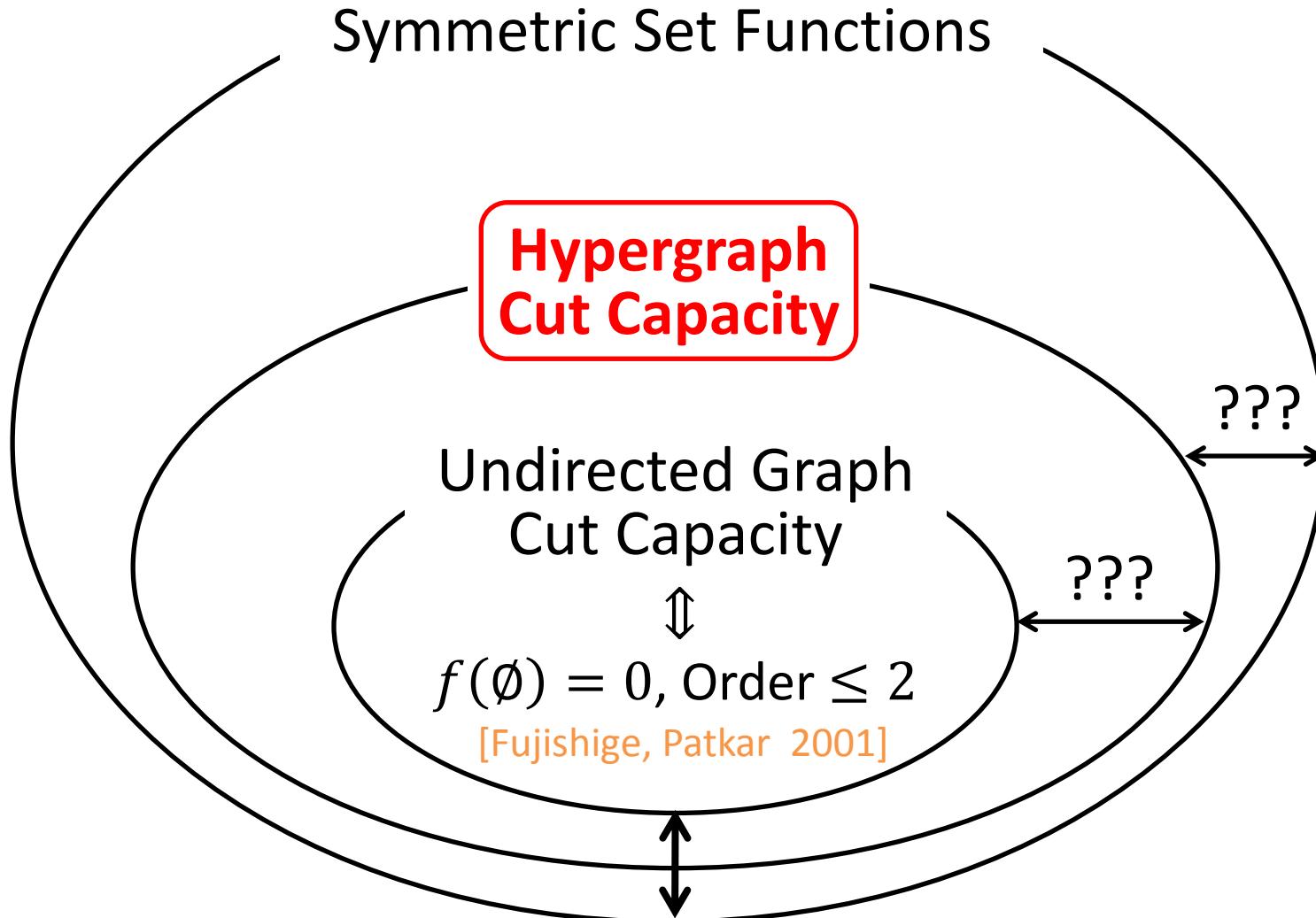
Functions on set families

- V : finite set (**ground set**)
- $\mathcal{D} \subseteq 2^V = \{X \mid X \subseteq V\}$: family of subsets (**domain**)
- R : set of values (**codomain**)

$f: \mathcal{D} \rightarrow R$ is called a **set function**.

- * We assume $R = \mathbf{R} = \{r \mid r: \text{real}\}$.
- * We assume $\mathcal{D} = 2^V$, unless any notice.

Background

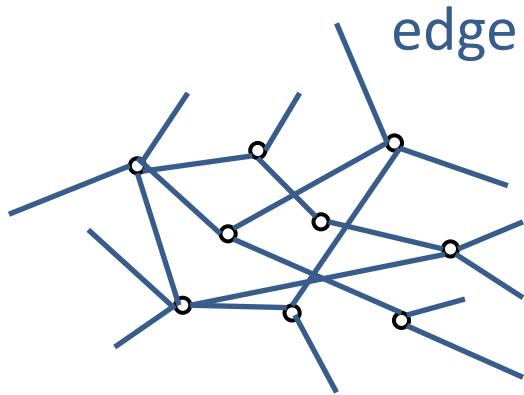


Hypergraphs

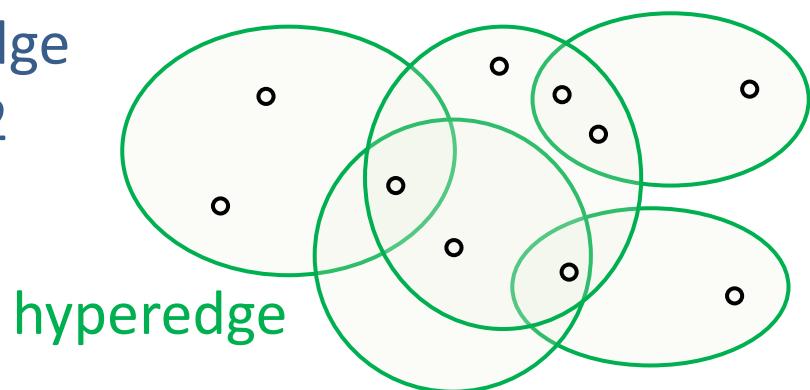
Undirected graph

Generalized
→

Hypergraph



edge \Leftrightarrow hyperedge
of size 2



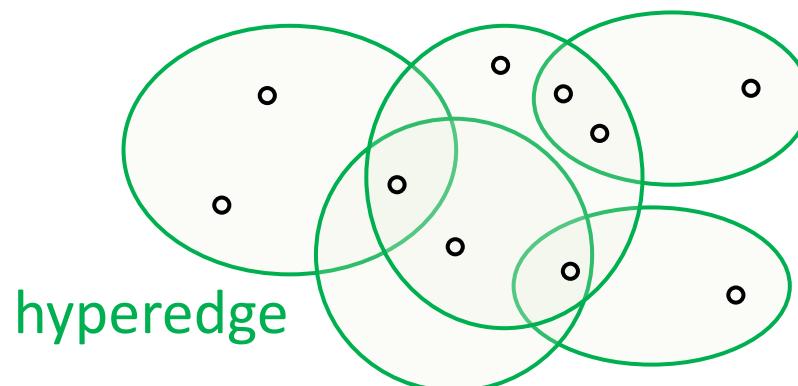
Each edge connects **two vertices**.

Each hyperedge connects
an arbitrary number of vertices.

Hypergraphs

- V : finite set (**vertex set**)
- $\mathcal{E} \subseteq 2^V$: family of subsets (**hyperedge set**)

$\mathcal{H} = (V, \mathcal{E})$ is called a **hypergraph**.



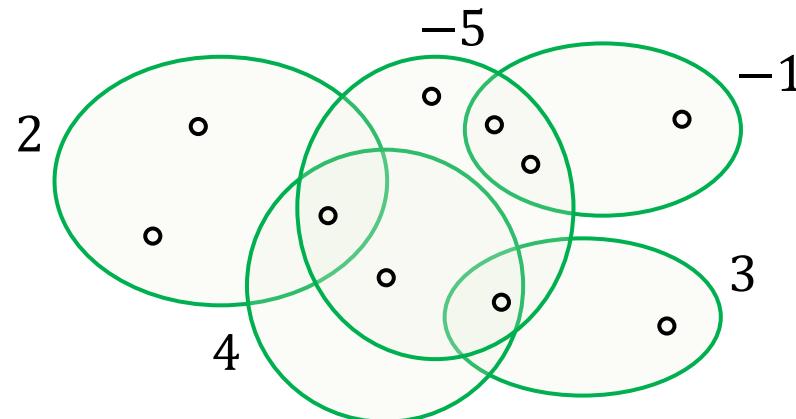
Hypernetworks

- V : finite set (**vertex set**)
- $\mathcal{E} \subseteq 2^V$: family of subsets (**hyperedge set**)

$\mathcal{H} = (V, \mathcal{E})$ is called a **hypergraph**.

- $c: \mathcal{E} \rightarrow \mathbf{R}$, real-valued set function (**capacity function**)

$\mathcal{N} = (\mathcal{H}, c)$ is called a **hypernetwork**.



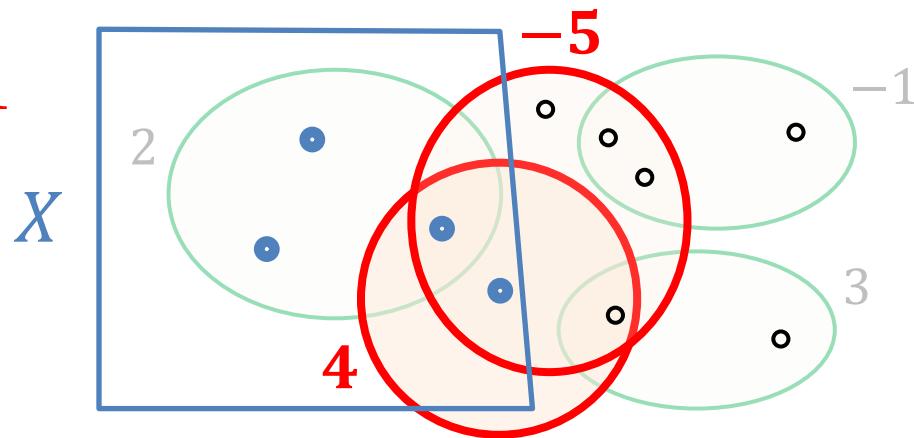
Cut Capacity

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

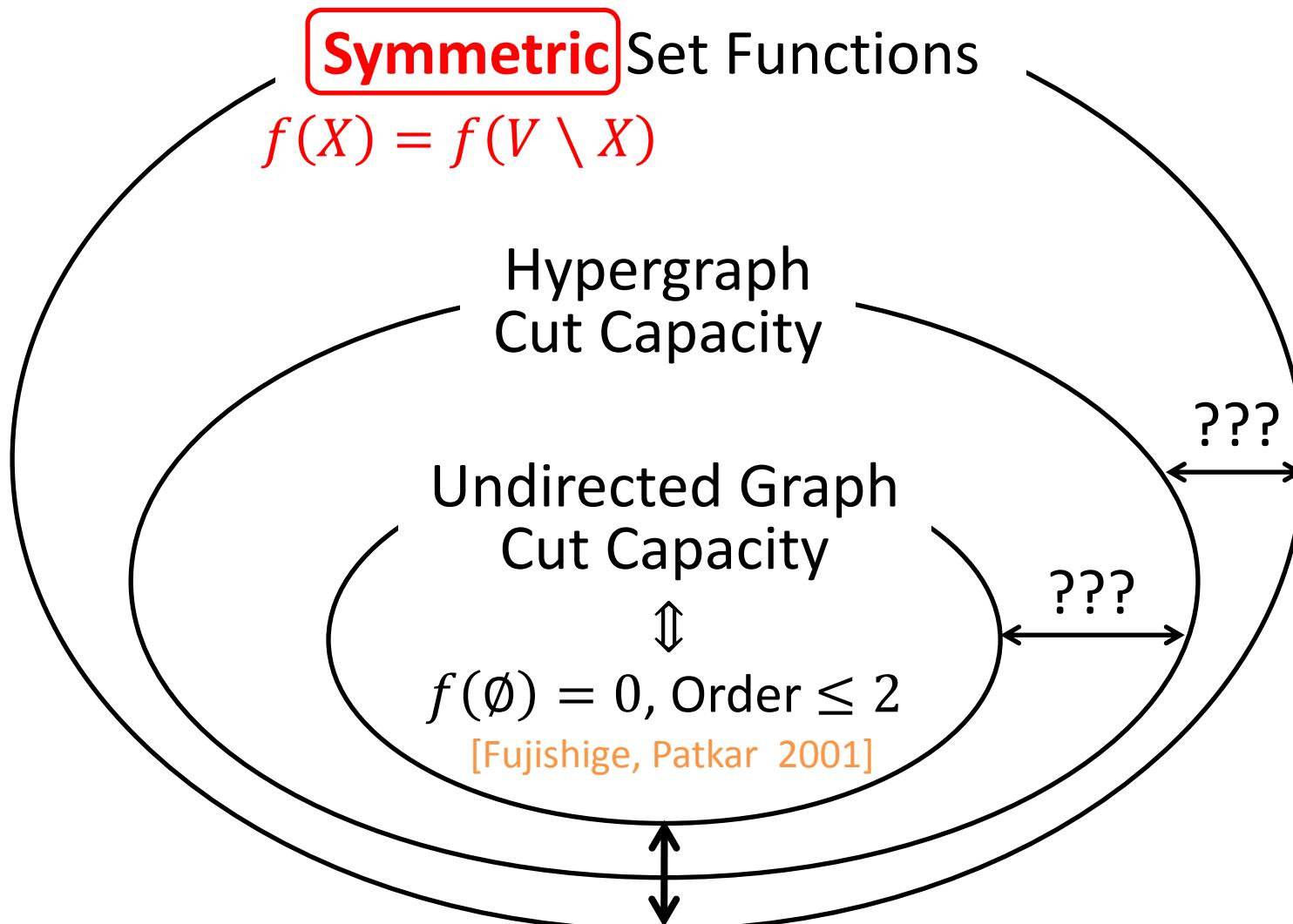
The **cut capacity function** $\kappa_{\mathcal{N}}: 2^V \rightarrow \mathbf{R}$

$$\kappa_{\mathcal{N}}(X) := \sum_{E \in \mathcal{E}} \{ c(E) \mid E \cap X \neq \emptyset \neq E \setminus X \}$$

$$\kappa_{\mathcal{N}}(X) = -1$$



Background

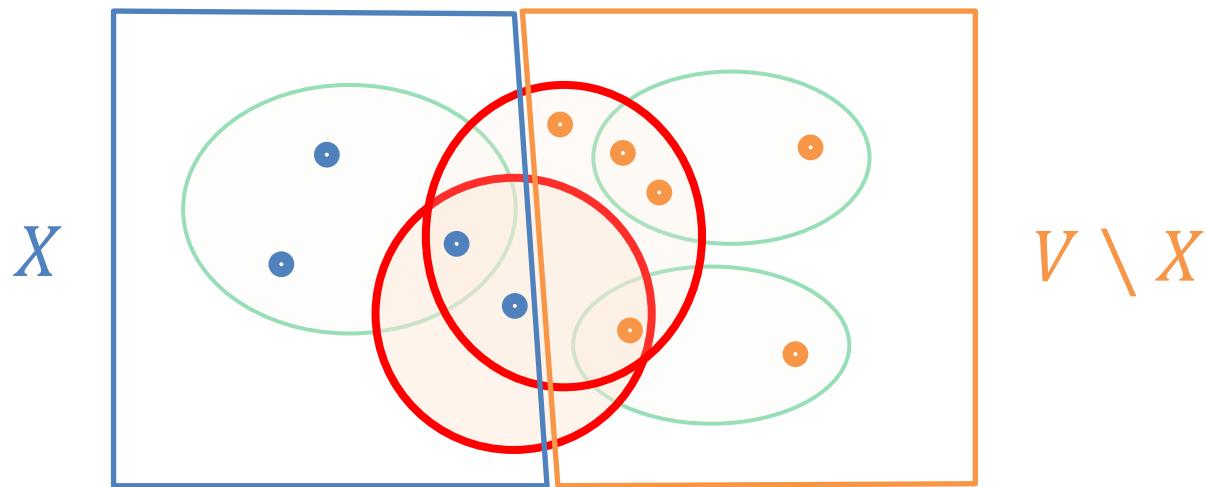


Symmetry of Cut Capacity

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

$\kappa_{\mathcal{N}}$ is **symmetric**, i.e.,

$$\kappa_{\mathcal{N}}(X) = \kappa_{\mathcal{N}}(V \setminus X) \quad (X \subseteq V)$$



Today's Talk

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

The cut capacity function $\kappa_{\mathcal{N}}: 2^V \rightarrow \mathbf{R}$ is a set function.

- Which set functions can be realized as cut capacity?
- When possible, how can we realize them?

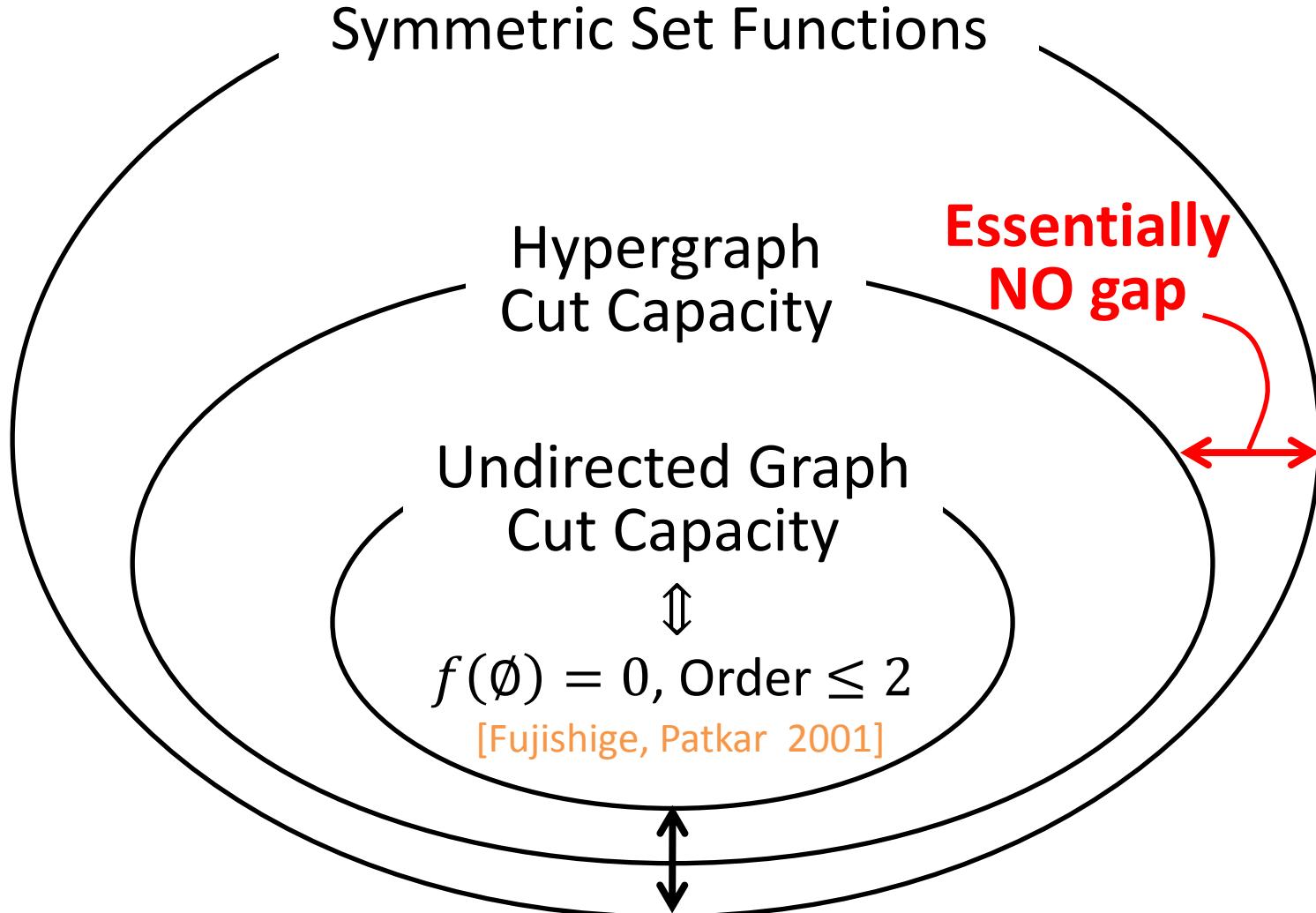
Today's Talk

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

The cut capacity function $\kappa_{\mathcal{N}}: 2^V \rightarrow \mathbf{R}$ is a set function.

- Which set functions can be realized as cut capacity?
 - Essentially **ALL symmetric** set functions!
 - **Submodularity** is **far from sufficient** when $c \geq 0$.
- When possible, how can we realize them?
 - We give several **standard forms** of hypergraphs by **restricting available hyperedges**.

Overview



Realizability by Hypergraph

$f: 2^V \rightarrow \mathbf{R}$, symmetric

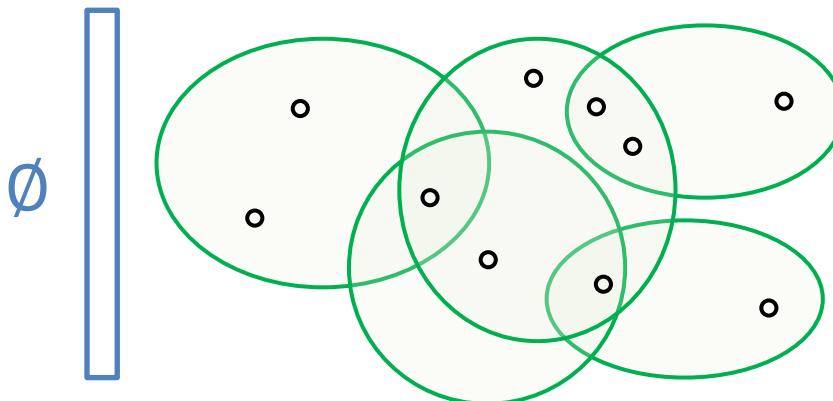
f is **realizable** as the cut cap. func. of a **hypernetwork**.

\Updownarrow

$$f(\emptyset) = 0.$$

[Y. 2015]?

$$\kappa_N(\emptyset) = 0$$



Realizability by Hypergraph

$f: 2^V \rightarrow \mathbf{R}$, symmetric

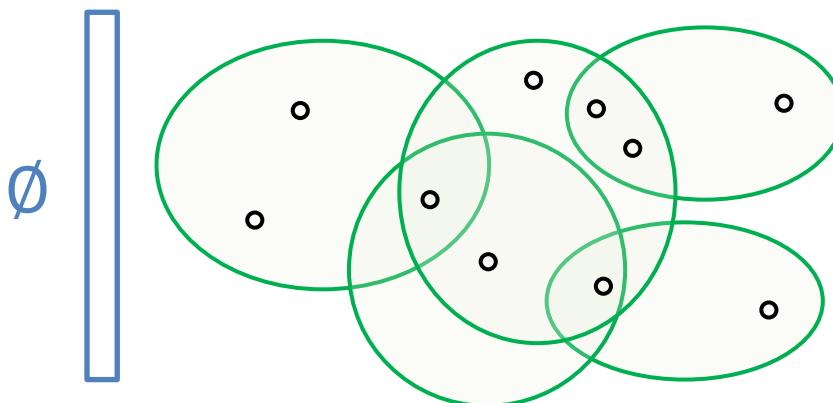
f is **realizable** as the cut cap. func. of a **hypernetwork**.

\Updownarrow

$$f(\emptyset) = 0.$$

Corollary of [Grishuhin 1989] ~~[Y. 2015]?~~

$$\kappa_N(\emptyset) = 0$$



Realizability by Hypergraph

$f: 2^V \rightarrow \mathbf{R}$, symmetric

f is **realizable** as the cut cap. func. of a **hypernetwork** with hyperedges of size at most k .

\Updownarrow

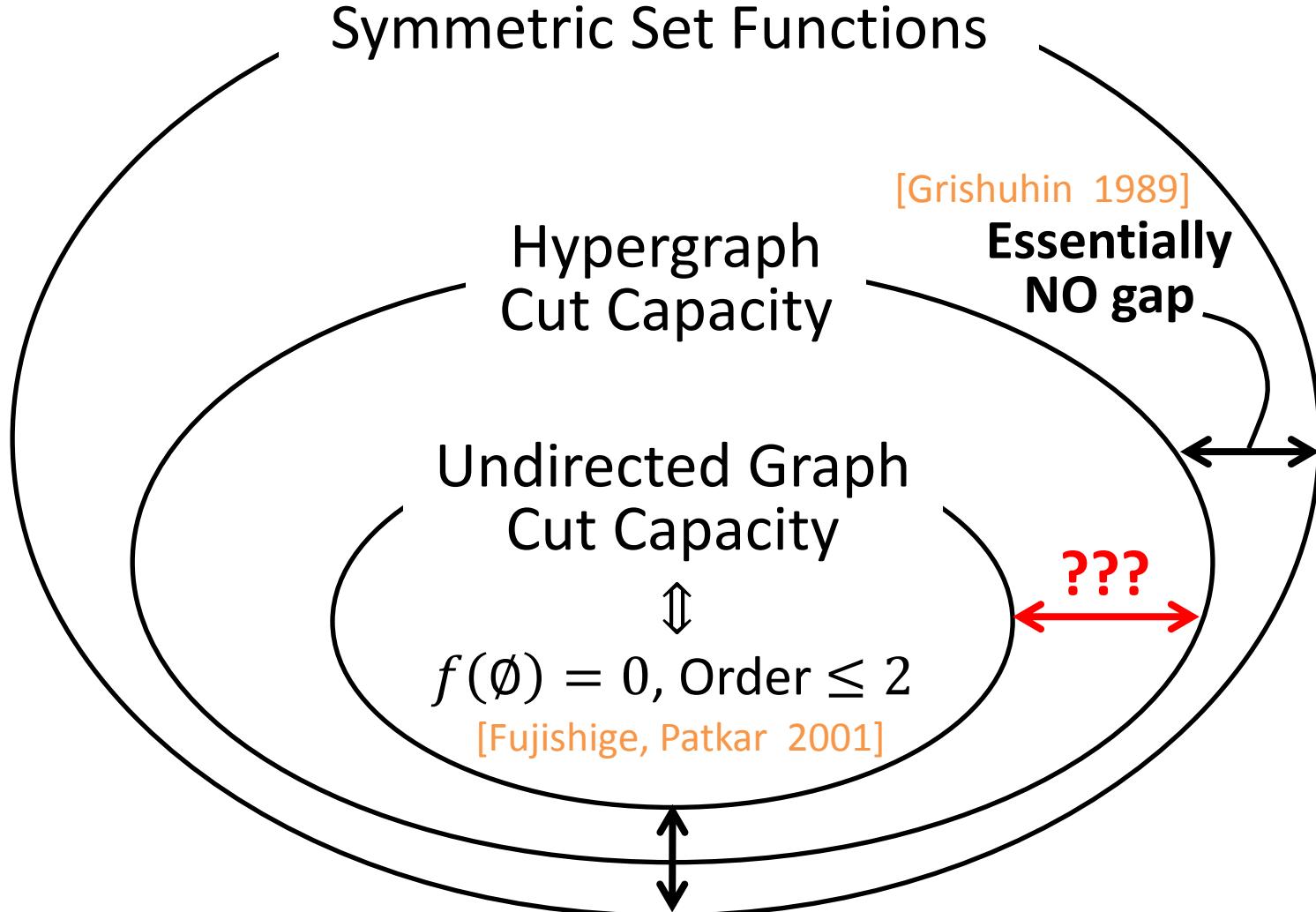
$f(\emptyset) = 0$,

f is of order at most k .

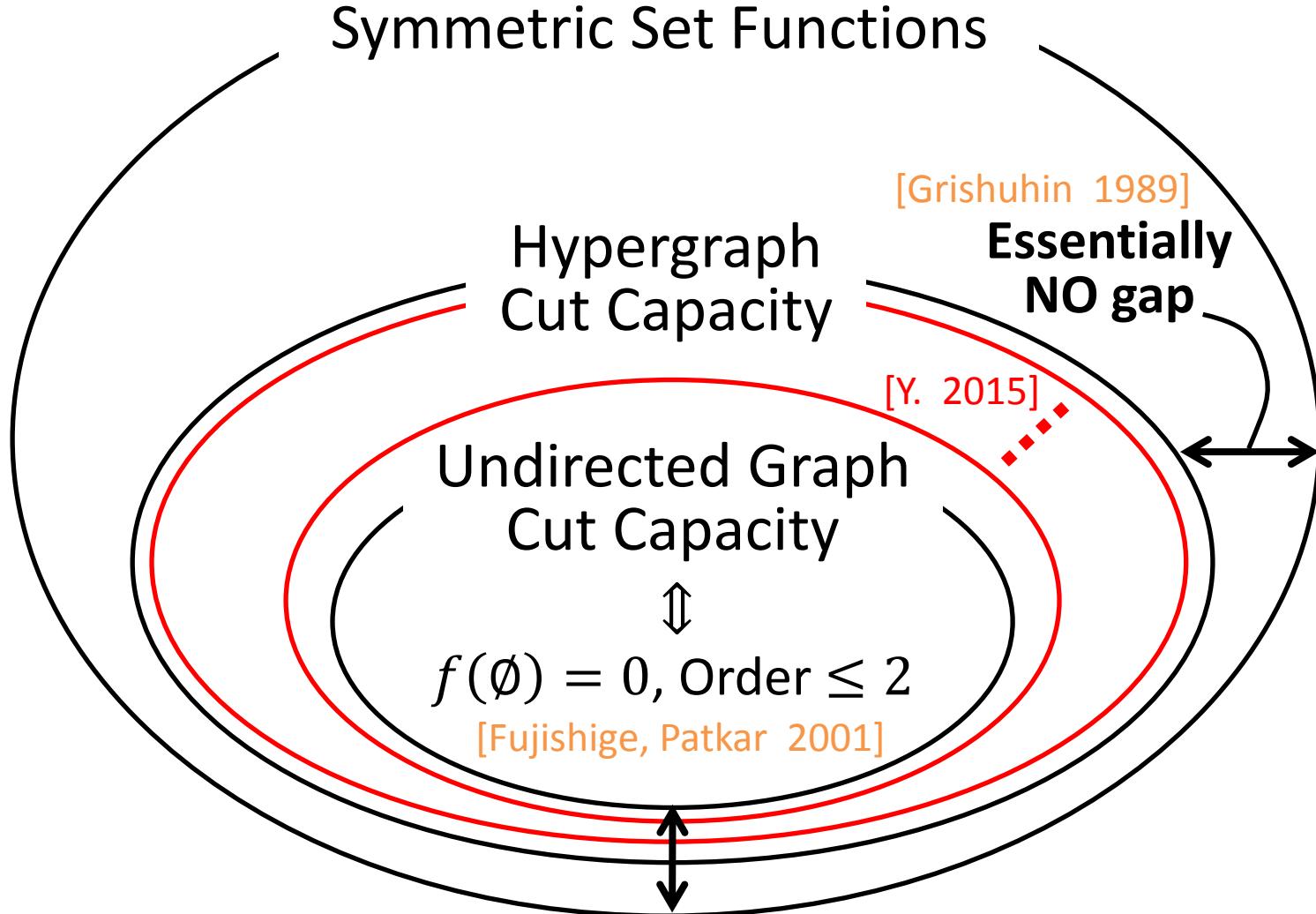
[Y. 2015]

Extends the case of undirected graphs [Fujishige, Patkar 2001].
(i.e., $k = 2$)

Overview

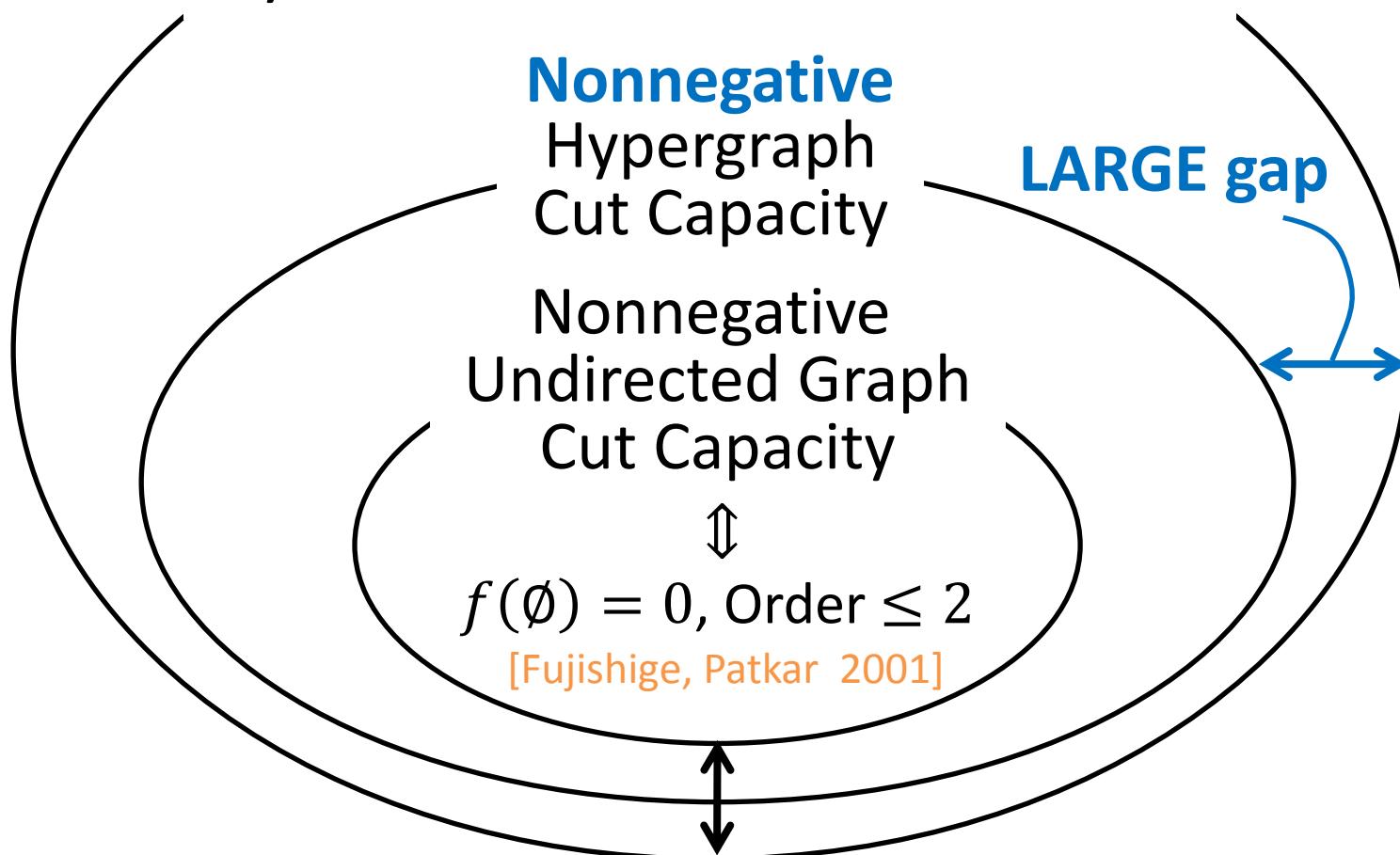


Overview



Overview

Symmetric **Submodular** Functions



Realizability by Hypergraph

$f: 2^V \rightarrow \mathbf{R}$, symmetric, submodular

f is **realizable** as the cut capacity function
of a nonnegative hypernetwork. ($\forall E \in \mathcal{E}, c(E) \geq 0$)

$\Downarrow \uparrow$

$f(\emptyset) = 0.$

\exists Counterexample with $|V| = 4$ for \uparrow

LARGE Gap!

Realizability by Hypergraph

$f: 2^V \rightarrow \mathbf{R}$, symmetric, submodular

f is **realizable** as the cut capacity function of a **nonnegative hypernetwork**. ($\forall E \in \mathcal{E}, c(E) \geq 0$)

$\Downarrow \uparrow$

$$f(\emptyset) = 0,$$

NEW! the **even-order** terms of f are **nonpositive**,
the **odd-order** terms of f are **nonnegative**.

[Y. 2015]

\exists Counterexample with $|V| = 5$ for \uparrow

Still LARGE Gap!!

Put **nonnegativity** aside ...

Redundancy of Hypergraph Realization

$f: 2^V \rightarrow \mathbf{R}$, symmetric

f is **realizable** as the cut cap. func. of a **hypernetwork**.

\Updownarrow

$f(\emptyset) = 0$.

Corollary of [Grishuhin 1989] (Reminder)

$$\mathcal{F} := \left\{ f \in \mathbf{R}^{2^V} \mid f(\emptyset) = 0, \quad f(X) = f(V \setminus X) \quad (\forall X \subseteq V) \right\}$$

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork $(c \in \mathbf{R}^{\mathcal{E}})$

\downarrow

$$\dim \mathcal{F} = 2^{|V|-1} - 1, \quad \dim \mathbf{R}^{\mathcal{E}} = |\mathcal{E}| \leq 2^{|V|}$$

Non-Redundant Hypergraphs?

$$\mathcal{F} := \left\{ f \in \mathbf{R}^{2^V} \mid f(\emptyset) = 0, \quad f(X) = f(V \setminus X) \quad (\forall X \subseteq V) \right\}$$

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

$$\dim \mathcal{F} = 2^{|V|-1} - 1 = |\mathcal{E}| = \dim \mathbf{R}^{\mathcal{E}}$$
$$\Downarrow$$

The linear mapping $c \mapsto \kappa_{\mathcal{N}}$ ($\mathbf{R}^{\mathcal{E}} \rightarrow \mathcal{F}$) can be bijective.

The cut capacity function $\kappa_{\mathcal{N}}: 2^V \rightarrow \mathbf{R}$

$$\kappa_{\mathcal{N}}(X) := \sum_{E \in \mathcal{E}} \{ c(E) \mid E \cap X \neq \emptyset \neq E \setminus X \}$$

Standard Form 1 (Rooted)

$$\mathcal{F} := \left\{ f \in \mathbf{R}^{2^V} \mid f(\emptyset) = 0, \quad f(X) = f(V \setminus X) \quad (\forall X \subseteq V) \right\}$$

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

$$r \in V, \quad \mathcal{E} = \{ X \mid r \in X \subseteq V, \quad |X| \geq 2 \}$$

↓

$$\dim \mathcal{F} = 2^{|V|-1} - 1 = |\mathcal{E}| = \dim \mathbf{R}^{\mathcal{E}}$$

..

$$X \in \mathcal{E} \iff \emptyset \neq \exists Z \subseteq V - r \text{ s.t. } X = Z + r$$

$$\#(\text{choices of } Z) = 2^{|V-r|} - 1$$

Standard Form 1 (Rooted)

$$\mathcal{F} := \left\{ f \in \mathbf{R}^{2^V} \mid f(\emptyset) = 0, \quad f(X) = f(V \setminus X) \quad (\forall X \subseteq V) \right\}$$

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

$$r \in V, \quad \mathcal{E} = \{ X \mid r \in X \subseteq V, \quad |X| \geq 2 \}$$

↓

$$\dim \mathcal{F} = 2^{|V|-1} - 1 = |\mathcal{E}| = \dim \mathbf{R}^{\mathcal{E}}$$

$$r \in V, \quad \mathcal{E} = \{ X \mid r \in X \subseteq V, \quad |X| \geq 2 \}$$

↓

The linear mapping $c \mapsto \kappa_{\mathcal{N}} \left(\mathbf{R}^{\mathcal{E}} \rightarrow \mathcal{F} \right)$ is bijective.

Standard Form 2 (Even-size)

$$\mathcal{F} := \left\{ f \in \mathbf{R}^{2^V} \mid f(\emptyset) = 0, \quad f(X) = f(V \setminus X) \quad (\forall X \subseteq V) \right\}$$

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

$$V \neq \emptyset, \quad \mathcal{E} = \{ X \mid \emptyset \neq X \subseteq V, \quad |X|: \text{even} \}$$

↓

$$\dim \mathcal{F} = 2^{|V|-1} - 1 = |\mathcal{E}| = \dim \mathbf{R}^{\mathcal{E}}$$

$$\begin{aligned} \therefore 2^{|V|} &= (1+1)^{|V|} + (1-1)^{|V|} = \sum_{X \subseteq V} \left(1 + (-1)^{|X|} \right) \\ &= 2|\{X \subseteq V \mid |X|: \text{even}\}| = 2(|\mathcal{E}| + 1) \end{aligned}$$

Standard Form 2 (Even-size)

$$\mathcal{F} := \left\{ f \in \mathbf{R}^{2^V} \mid f(\emptyset) = 0, \quad f(X) = f(V \setminus X) \quad (\forall X \subseteq V) \right\}$$

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

$$V \neq \emptyset, \quad \mathcal{E} = \{ X \mid \emptyset \neq X \subseteq V, \quad |X|: \text{even} \}$$

↓

$$\dim \mathcal{F} = 2^{|V|-1} - 1 = |\mathcal{E}| = \dim \mathbf{R}^{\mathcal{E}}$$

$$V \neq \emptyset, \quad \mathcal{E} = \{ X \mid \emptyset \neq X \subseteq V, \quad |X|: \text{even} \}$$

↓

The linear mapping $c \mapsto \kappa_{\mathcal{N}} \left(\mathbf{R}^{\mathcal{E}} \rightarrow \mathcal{F} \right)$ is bijective.

Standard Form 3 (Majority)

$$\mathcal{F} := \left\{ f \in \mathbf{R}^{2^V} \mid f(\emptyset) = 0, \quad f(X) = f(V \setminus X) \quad (\forall X \subseteq V) \right\}$$

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E} \setminus \{E\}), c)$: hypernetwork

$$|V|: \text{odd}, \quad \mathcal{E} = \left\{ X \subseteq V \mid \left\lceil \frac{|V|}{2} \right\rceil \leq |X| \leq |V| \right\}, \quad E \in \mathcal{E}$$

↓

$$\dim \mathcal{F} = 2^{|V|-1} - 1 = |\mathcal{E}| - 1 = \dim \mathbf{R}^{\mathcal{E} \setminus \{E\}}$$

..
..

$$X \subseteq V, \quad X \in \mathcal{E} \iff V \setminus X \notin \mathcal{E}$$

Standard Form 3 (Majority)

$$\mathcal{F} := \left\{ f \in \mathbf{R}^{2^V} \mid f(\emptyset) = 0, \quad f(X) = f(V \setminus X) \quad (\forall X \subseteq V) \right\}$$

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E} \setminus \{E\}), c)$: hypernetwork

$$|V|: \text{odd}, \quad \mathcal{E} = \left\{ X \subseteq V \mid \left\lceil \frac{|V|}{2} \right\rceil \leq |X| \leq |V| \right\}, \quad E \in \mathcal{E}$$

↓

$$\dim \mathcal{F} = 2^{|V|-1} - 1 = |\mathcal{E}| - 1 = \dim \mathbf{R}^{\mathcal{E} \setminus \{E\}}$$

$$|V|: \text{odd}, \quad \mathcal{E} = \left\{ X \subseteq V \mid \left\lceil \frac{|V|}{2} \right\rceil \leq |X| \leq |V| \right\}, \quad E \in \mathcal{E}$$

↓

The linear mapping $c \mapsto \kappa_{\mathcal{N}} (\mathbf{R}^{\mathcal{E} \setminus \{E\}} \rightarrow \mathcal{F})$ is **bijective**.

How to see the correctness?

Rooted Standard Forms (Reminder)

$$\mathcal{F} := \left\{ f \in \mathbf{R}^{2^V} \mid f(\emptyset) = 0, \quad f(X) = f(V \setminus X) \quad (\forall X \subseteq V) \right\}$$

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

$$r \in V, \quad \mathcal{E} = \{ X \mid r \in X \subseteq V, \quad |X| \geq 2 \}$$

↓

$$\dim \mathcal{F} = 2^{|V|-1} - 1 = |\mathcal{E}| = \dim \mathbf{R}^{\mathcal{E}}$$

$$r \in V, \quad \mathcal{E} = \{ X \mid r \in X \subseteq V, \quad |X| \geq 2 \}$$

↓

The linear mapping $c \mapsto \kappa_{\mathcal{N}} \left(\mathbf{R}^{\mathcal{E}} \rightarrow \mathcal{F} \right)$ is bijective.

Correctness of Rooted Standard Forms

$$\begin{bmatrix} \kappa_{\mathcal{N}}(\{r\}) \\ \kappa_{\mathcal{N}}(\{r, v_1\}) \\ \kappa_{\mathcal{N}}(\{r, v_2\}) \\ \vdots \\ \kappa_{\mathcal{N}}(\{r, v_1, v_2\}) \\ \vdots \\ \kappa_{\mathcal{N}}(V - v_1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & & \vdots & & \vdots \\ 1 & 0 & 0 & \cdots & 0 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 & \cdots & 0 \end{bmatrix} \begin{bmatrix} c(V) \\ c(\{r, v_1\}) \\ c(\{r, v_2\}) \\ \vdots \\ c(\{r, v_1, v_2\}) \\ \vdots \\ c(V - v_1) \end{bmatrix}$$

$$r \in V, \mathcal{E} = \{ X \mid r \in X \subseteq V, |X| \geq 2 \}$$

↓

The linear mapping $c \mapsto \kappa_{\mathcal{N}} (\mathbf{R}^{\mathcal{E}} \rightarrow \mathcal{F})$ is bijective.

[Y. 2015]

Correctness of Rooted Standard Forms

$$\begin{bmatrix}
 \kappa_{\mathcal{N}}(\{r\}) \\
 \kappa_{\mathcal{N}}(\{r, v_1\}) \\
 \kappa_{\mathcal{N}}(\{r, v_2\}) \\
 \vdots \\
 \kappa_{\mathcal{N}}(\{r, v_1, v_2\}) \\
 \vdots \\
 \kappa_{\mathcal{N}}(V - v_1)
 \end{bmatrix} = \begin{bmatrix}
 1 & 1 & 1 & \cdots & 1 & \cdots & 1 \\
 1 & 0 & 1 & \cdots & 1 & \cdots & 1 \\
 1 & 1 & 0 & & 1 & & 1 \\
 \vdots & \vdots & & \ddots & & & \vdots \\
 1 & 0 & 0 & \cdots & 0 & \cdots & 1 \\
 1 & 0 & 0 & & 0 & \cdots & \vdots \\
 \vdots & & & & \ddots & \vdots & \vdots \\
 1 & 1 & 0 & \cdots & 1 & \cdots & 0
 \end{bmatrix} \begin{bmatrix}
 c(V) \\
 c(\{r, v_1\}) \\
 c(\{r, v_2\}) \\
 \vdots \\
 c(\{r, v_1, v_2\}) \\
 \vdots \\
 c(V - v_1)
 \end{bmatrix}$$

$$r \in V, \mathcal{E} = \{ X \mid r \in X \subseteq V, |X| \geq 2 \}$$

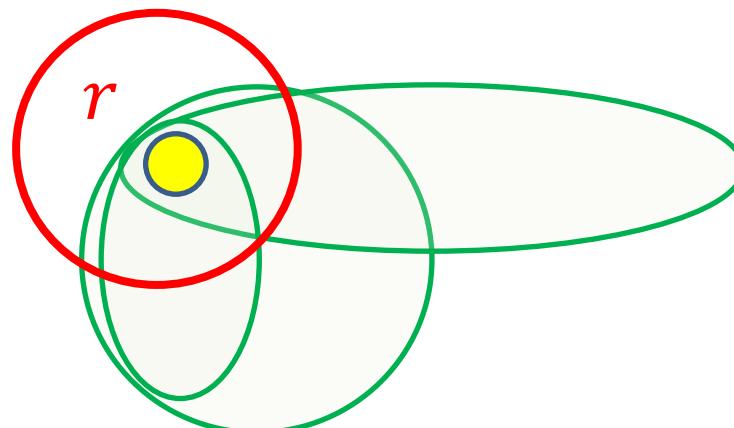
↓

The linear mapping $c \mapsto \kappa_{\mathcal{N}} (\mathbf{R}^{\mathcal{E}} \rightarrow \mathcal{F})$ is bijective.

[Y. 2015]

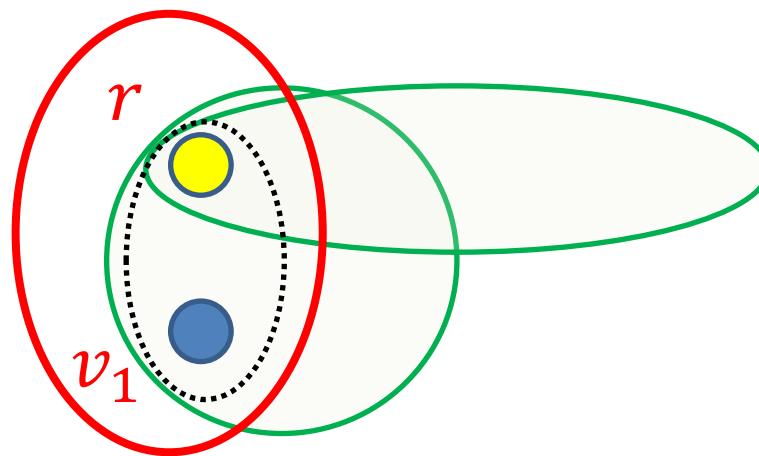
Correctness of Rooted Standard Forms

$$\begin{bmatrix} \kappa_{\mathcal{N}}(\{r\}) \\ \kappa_{\mathcal{N}}(\{r, v_1\}) \\ \kappa_{\mathcal{N}}(\{r, v_2\}) \\ \vdots \\ \kappa_{\mathcal{N}}(\{r, v_1, v_2\}) \\ \vdots \\ \kappa_{\mathcal{N}}(V - v_1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & 1 & \cdots & 1 & \cdots & 1 \\ 1 & 1 & 0 & & 1 & & 1 \\ \vdots & \vdots & & \ddots & & & \vdots \\ 1 & 0 & 0 & \cdots & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 1 & \cdots & 0 \end{bmatrix} \begin{bmatrix} c(V) \\ c(\{r, v_1\}) \\ c(\{r, v_2\}) \\ \vdots \\ c(\{r, v_1, v_2\}) \\ \vdots \\ c(V - v_1) \end{bmatrix}$$



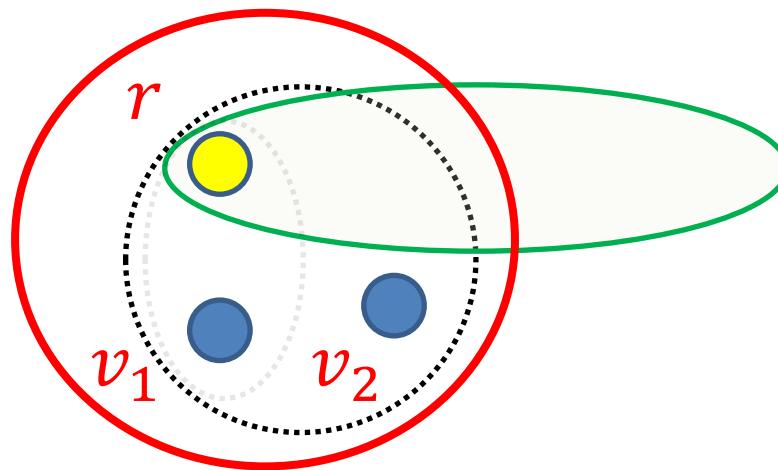
Correctness of Rooted Standard Forms

$$\begin{bmatrix} \kappa_N(\{r\}) \\ \kappa_N(\{r, v_1\}) \\ \kappa_N(\{r, v_2\}) \\ \vdots \\ \kappa_N(\{r, v_1, v_2\}) \\ \vdots \\ \kappa_N(V - v_1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & 1 & \cdots & 1 & \cdots & 1 \\ 1 & 1 & 0 & & 1 & 1 \\ \vdots & \vdots & & \ddots & & \vdots \\ 1 & 0 & 0 & \cdots & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 1 & \cdots & 0 \end{bmatrix} \begin{bmatrix} c(V) \\ c(\{r, v_1\}) \\ c(\{r, v_2\}) \\ \vdots \\ c(\{r, v_1, v_2\}) \\ \vdots \\ c(V - v_1) \end{bmatrix}$$



Correctness of Rooted Standard Forms

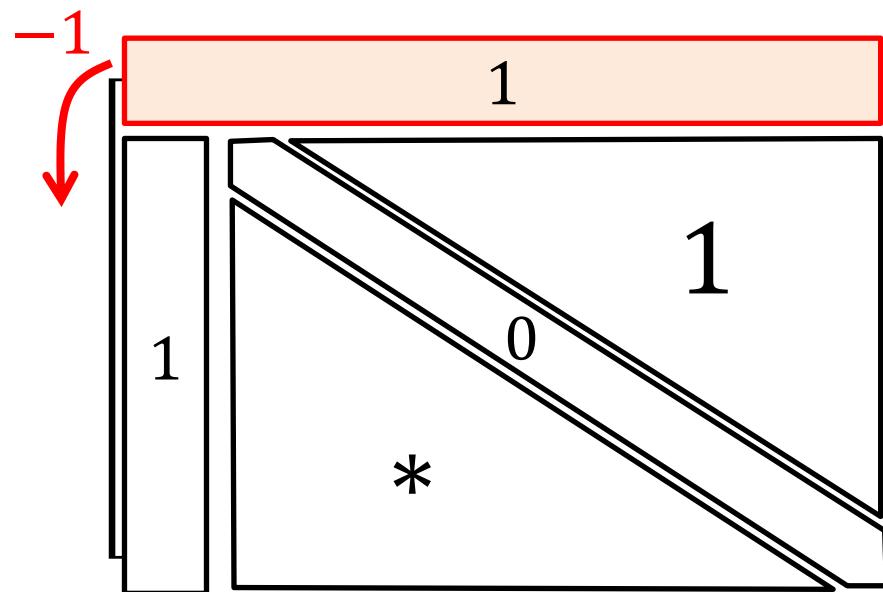
$$\begin{bmatrix}
 \kappa_N(\{r\}) \\
 \kappa_N(\{r, v_1\}) \\
 \kappa_N(\{r, v_2\}) \\
 \vdots \\
 \kappa_N(\{r, v_1, v_2\}) \\
 \vdots \\
 \kappa_N(V - v_1)
 \end{bmatrix} = \begin{bmatrix}
 1 & 1 & 1 & \cdots & 1 & \cdots & 1 \\
 1 & 0 & 1 & \cdots & 1 & \cdots & 1 \\
 1 & 1 & 0 & & 1 & & 1 \\
 \vdots & \vdots & & \ddots & & & \vdots \\
 1 & 0 & 0 & \cdots & 0 & \cdots & 1 \\
 1 & 1 & 0 & \cdots & 1 & \cdots & 0
 \end{bmatrix} \begin{bmatrix}
 c(V) \\
 c(\{r, v_1\}) \\
 c(\{r, v_2\}) \\
 \vdots \\
 c(\{r, v_1, v_2\}) \\
 \vdots \\
 c(V - v_1)
 \end{bmatrix}$$



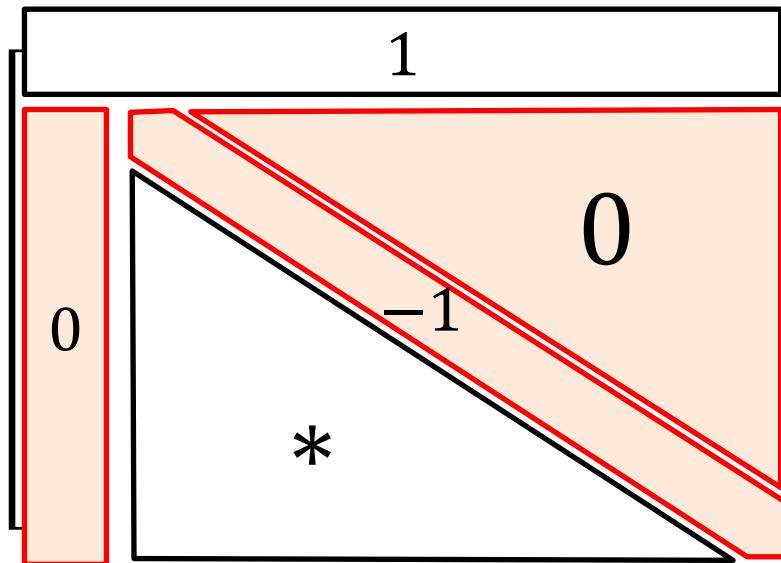
Correctness of Rooted Standard Forms

$$\begin{bmatrix} \kappa_{\mathcal{N}}(\{r\}) \\ \kappa_{\mathcal{N}}(\{r, v_1\}) \\ \kappa_{\mathcal{N}}(\{r, v_2\}) \\ \vdots \\ \kappa_{\mathcal{N}}(\{r, v_1, v_2\}) \\ \vdots \\ \kappa_{\mathcal{N}}(V - v_1) \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & 0 & \\ & & & & * \\ & & & & \\ & & & & \end{bmatrix} \begin{bmatrix} c(V) \\ c(\{r, v_1\}) \\ c(\{r, v_2\}) \\ \vdots \\ c(\{r, v_1, v_2\}) \\ \vdots \\ c(V - v_1) \end{bmatrix}$$

Correctness of Rooted Standard Forms



Correctness of Rooted Standard Forms



Nonsingular

Even Standard Forms (Reminder)

$$\mathcal{F} := \left\{ f \in \mathbf{R}^{2^V} \mid f(\emptyset) = 0, \quad f(X) = f(V \setminus X) \quad (\forall X \subseteq V) \right\}$$

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

$$V \neq \emptyset, \quad \mathcal{E} = \{ X \mid \emptyset \neq X \subseteq V, \quad |X|: \text{even} \}$$

↓

$$\dim \mathcal{F} = 2^{|V|-1} - 1 = |\mathcal{E}| = \dim \mathbf{R}^{\mathcal{E}}$$

$$V \neq \emptyset, \quad \mathcal{E} = \{ X \mid \emptyset \neq X \subseteq V, \quad |X|: \text{even} \}$$

↓

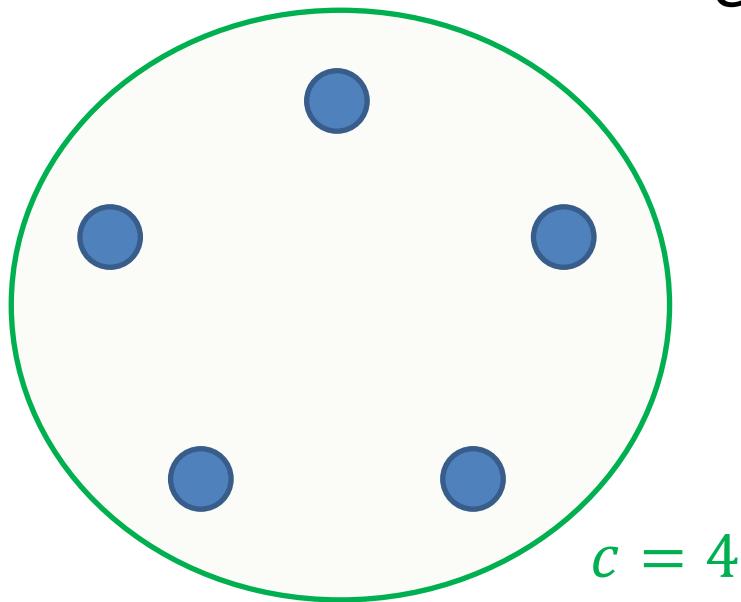
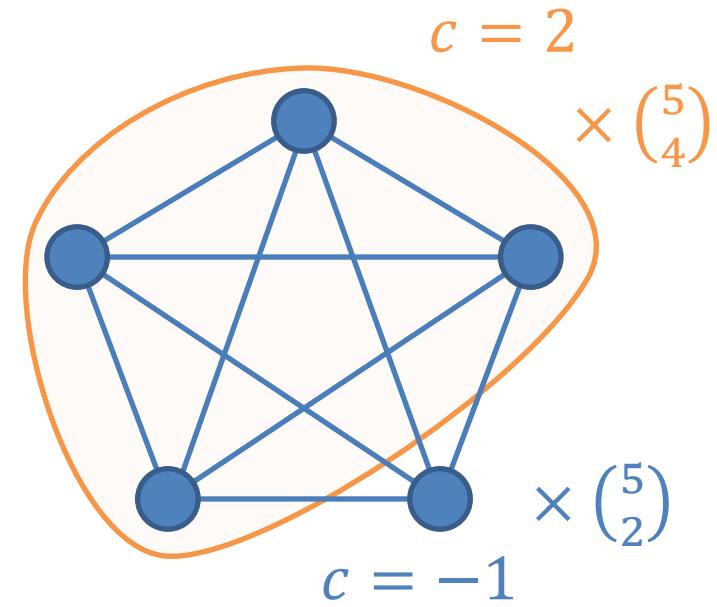
The linear mapping $c \mapsto \kappa_{\mathcal{N}} \left(\mathbf{R}^{\mathcal{E}} \rightarrow \mathcal{F} \right)$ is bijective.

Odd-size Hyperedges

For $k \in \mathbf{Z}_{>0}$, any hyperedge of size $2k + 1$
can be replaced by ones of size $2, 4, \dots, 2k$.

[Y. 2015]

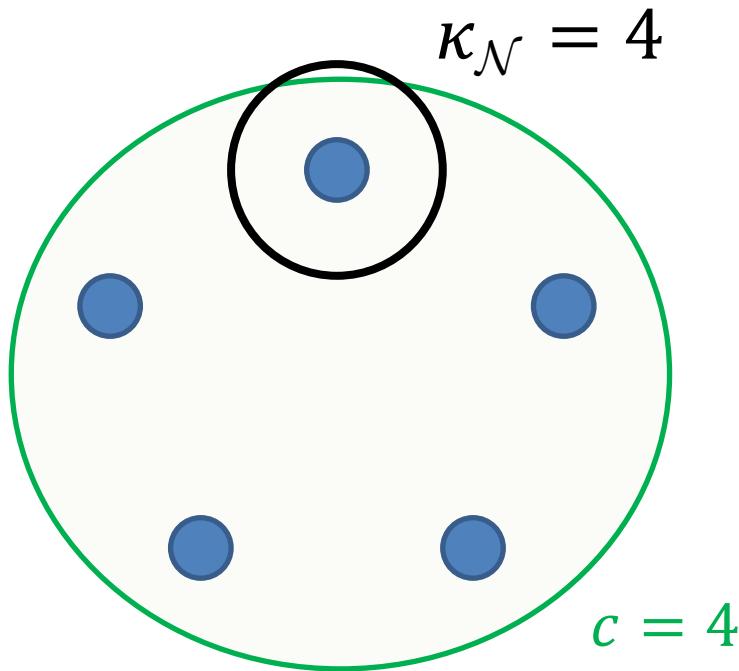
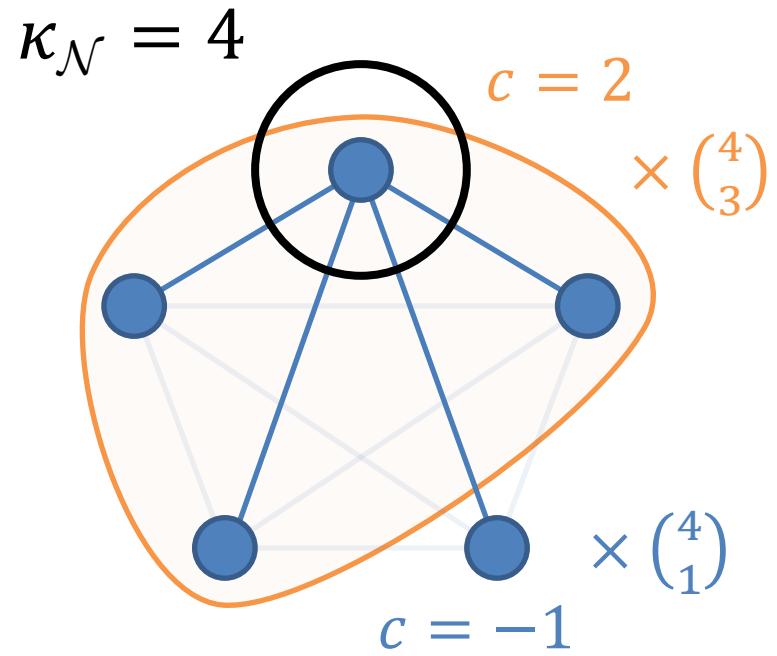
ex. $k = 2$



Odd-size Hyperedges

For $k \in \mathbb{Z}_{>0}$, any hyperedge of size $2k + 1$
can be replaced by ones of size $2, 4, \dots, 2k$.

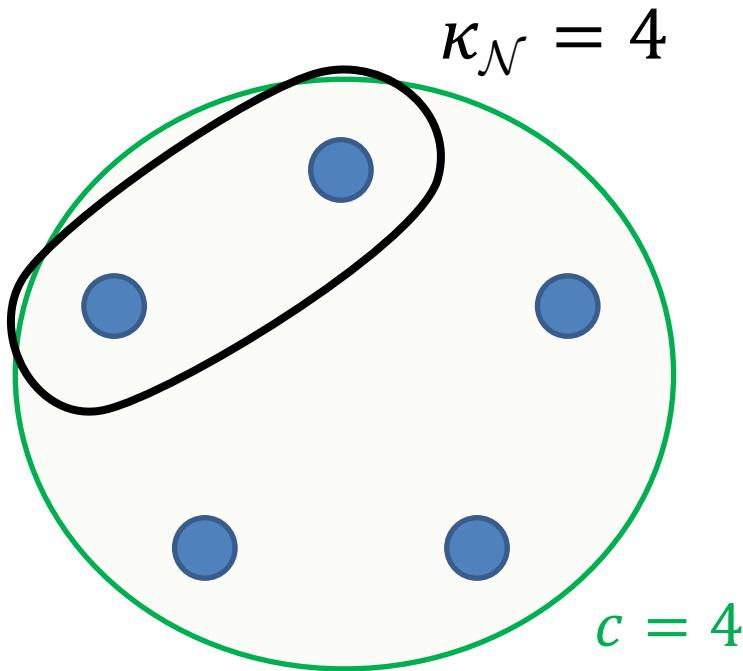
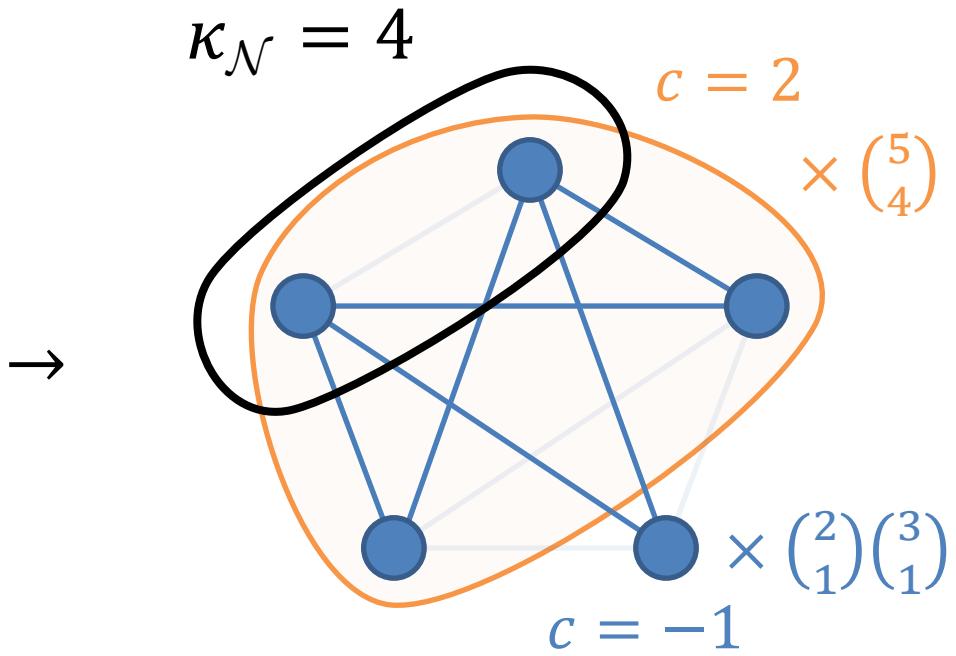
[Y. 2015]



Odd-size Hyperedges

For $k \in \mathbb{Z}_{>0}$, any hyperedge of size $2k + 1$
can be replaced by ones of size $2, 4, \dots, 2k$.

[Y. 2015]



Conclusion

- Any symmetric real-valued set function f with $f(\emptyset) = 0$ can be realized as **cut capacity of a hypergraph**.
(Extends the case of undirected graphs [Fujishige, Patkar 2001])
- We give three types of hyperedge sets consisting **bases for cut realization** as **standard forms**.
(with a fixed root, **even-size**, majorities without any one)
[Grishuhin 1989]
- For the case when the capacity function is **nonnegative**, sufficient conditions are still **OPEN** ...

Properties of Cut Capacity Functions

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

- $\kappa_{\mathcal{N}}$ is **symmetric**, i.e.,

$$\kappa_{\mathcal{N}}(X) = \kappa_{\mathcal{N}}(V \setminus X) \quad (X \subseteq V)$$

- $c: \mathcal{E} \rightarrow \mathbf{R}$ is **nonnegative** ($\forall E \in \mathcal{E}, c(E) \geq 0$)

⇒ $\kappa_{\mathcal{N}}$ is **submodular**, i.e.,

$$\kappa_{\mathcal{N}}(X) + \kappa_{\mathcal{N}}(Y) \geq \kappa_{\mathcal{N}}(X \cup Y) + \kappa_{\mathcal{N}}(X \cap Y) \quad (X, Y \subseteq V)$$

From the Viewpoint of Minimization

$f: 2^V \rightarrow \mathbf{R}$, **symmetric** and **submodular**

$$X^* \in \operatorname{argmin}_{X: \emptyset \neq X \subset V} f(X)$$

can be found in $O(|V|^3 \text{EO})$ time (EO: eval. cost of f)

[Queyranne 1998]

- Generalizes minimum-cut algorithms for
 - undirected graphs [Nagamochi, Ibaraki 1992] and
 - hypergraphs [Klimmek, Wagner 1996].
- Solved by repeated general submodular minimizations, requiring $O(|V|^5 \text{EO} + |V|^6)$ time per once [Orlin 2009].

From the Viewpoint of Minimization

$f: 2^V \rightarrow \mathbf{R}$, **symmetric** and **submodular**

$$X^* \in \operatorname{argmin}_{X: \emptyset \neq X \subset V} f(X)$$

can be found in $O(|V|^3 \text{EO})$ time (EO: eval. cost of f)

[Queyranne 1998]

- Generalizes minimum-cut algorithms for
 - undirected graphs [Nagamochi, Ibaraki 1992] and
 - hypergraphs [Klimmek, Wagner 1996].
- **How close** the set of **cut capacity functions** is to the set of **symmetric submodular functions**?

Order of Set Function

$\forall f: 2^V \rightarrow \mathbf{R}, \exists! F \in \mathbf{R}[x_v \mid v \in V]$: polynomial s.t.

$$F(\mathbf{1}_X) = f(X) \quad (X \subseteq V), \text{ and}$$

$$F(x) = \sum_{X \subseteq V} a_X \prod_{v \in X} x_v \quad (x = (x_v \mid v \in V))$$

(cf. Möbius Inversion Formula)

- (The order of f) $\coloneqq \deg F = \max_{X \subseteq V} \{|X| \mid a_X \neq 0\}$.
- a_X : $|X|$ -th order term

Odd(Even)-Order Terms of Cut Cap.

$\mathcal{N} = (\mathcal{H} = (V, \mathcal{E}), c)$: hypernetwork

$$a_X = \begin{cases} \sum_{E \in \mathcal{E}} \{ c(E) \mid X \subset E \} & (|X|: \text{odd}) \\ - \left(2c(X) + \sum_{E \in \mathcal{E}} \{ c(E) \mid X \subset E \} \right) & (|X|: \text{even}) \end{cases}$$

[Y. 2015]

$$F(\mathbf{1}_X) = \kappa_{\mathcal{N}}(X) \quad (X \subseteq V), \text{ and}$$

$$F(x) = \sum_{X \subseteq V} a_X \prod_{v \in X} x_v \quad (x = (x_v \mid v \in V))$$

References

S. Fujishige, S. B. Patkar: **Realization of set functions as cut functions of graphs and hypergraphs.**
Discrete Mathematics, **226** (2001), 199–210.

V. P. Grishuhin: **Cones of alternating and cut submodular set functions.** *Combinatorica*, **9** (1989), 21–32.

References

M. Queyranne: **Minimizing symmetric submodular functions.**
Mathematical Programming, **82** (1998), 3–12.

H. Nagamochi, T. Ibaraki: **Computing edge-connectivity in multigraphs and capacitated graphs.**
SIAM Journal on Discrete Mathematics, **5** (1992), 54–66.

R. Klimmek, F. Wagner: **A simple hypergraph min cut algorithm.**
Internal Report B 96-02,
Bericht FU Berlin Fachbereich Mathematik und Informatik, 1996.

J. B. Orlin: **A faster strongly polynomial time algorithm for submodular function minimization.**
Mathematical Programming, **118** (2009), 237–251.