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𝑓 𝑋 = 𝑓 𝑉 ∖ 𝑋  

𝑓 𝑋 + 𝑓 𝑌 ≥ 𝑓 𝑋 ∪ 𝑌 + 𝑓 𝑋 ∩ 𝑌  
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𝑓 ∅ = 0, Order ≤ 2 
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𝑓 ∅ = 0, Order ≤ 2 



Functions on set families 

• 𝑉: finite set  (ground set) 

• D ⊆ 2𝑉 = 𝑋 𝑋 ⊆ 𝑉 : family of subsets  (domain) 

• 𝑅: set of values  (codomain) 

𝑓:D → 𝑅 is called a set function. 

* We assume 𝑅 = 𝐑 = 𝑟 𝑟: real . 

* We assume D = 2𝑉, unless any notice. 

Set Functions 
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𝑓 ∅ = 0, Order ≤ 2 



Hypergraphs 

Each edge connects two vertices. Each hyperedge connects 
an arbitrary number of vertices.  

Undirected graph Hypergraph 

edge ⇔ hyperedge 
of size 2 

hyperedge 
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Generalized 



• 𝑉: finite set  (vertex set) 

• E ⊆ 2𝑉: family of subsets  (hyperedge set) 

H = 𝑉, E  is called a hypergraph. 

Hypergraphs 

hyperedge 
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• 𝑉: finite set  (vertex set) 

• E ⊆ 2𝑉: family of subsets  (hyperedge set) 

H = 𝑉, E  is called a hypergraph. 

• 𝑐: E → 𝐑, real-valued set function  (capacity function) 

N = H, 𝑐  is called a hypernetwork. 

Hypernetworks 

−5 
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Cut Capacity 

N = H = 𝑉, E , 𝑐 : hypernetwork 

The cut capacity function 𝜅N : 2
𝑉 → 𝐑 

𝜅N 𝑋 ≔  𝑐 𝐸 𝐸 ∩ 𝑋 ≠ ∅ ≠ 𝐸 ∖ 𝑋

𝐸∈E

 

𝜅N 𝑋 = −1 

𝑋 

−𝟓 

𝟒 

2 
−1 

3 
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𝑓 ∅ = 0, Order ≤ 2 

𝑓 𝑋 = 𝑓 𝑉 ∖ 𝑋  



Symmetry of Cut Capacity 

N = H = 𝑉, E , 𝑐 : hypernetwork 

𝜅N  is symmetric, i.e., 

𝜅N 𝑋 = 𝜅N 𝑉 ∖ 𝑋    𝑋 ⊆ 𝑉  

 

𝑋 𝑉 ∖ 𝑋 
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Today's Talk 

N = H = 𝑉, E , 𝑐 : hypernetwork 

The cut capacity function 𝜅N : 2
𝑉 → 𝐑 is a set function. 

• Which set functions can be realized as cut capacity? 

– We give a necessary and sufficient condition. 

– Unrevealed the case when 𝑐: E → 𝐑  is nonnegative. 

• When possible, how can we realize them? 

– We give several standard forms of hypergraphs 
by restricting available hyperedges. 
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Today's Talk 

N = H = 𝑉, E , 𝑐 : hypernetwork 

The cut capacity function 𝜅N : 2
𝑉 → 𝐑 is a set function. 

• Which set functions can be realized as cut capacity? 

– Essentially ALL symmetric set functions! 

– Submodularity is far from sufficient when 𝑐 ≥ 0. 

• When possible, how can we realize them? 

– We give several standard forms of hypergraphs 
by restricting available hyperedges. 
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𝜅N ∅ = 0 

∅ 



Realizability by Hypergraph 

𝑓: 2𝑉 → 𝐑, symmetric 

𝑓 is realizable as the cut cap. func. of a hypernetwork 
with hyperedges of size at most 𝑘. 

 
𝑓 ∅ = 0, 

𝑓 is of 
 

21 

order at most 𝑘. 

[Y.  2015] 

Extends the case of undirected graphs [Fujishige, Patkar  2001]. 
(i.e., 𝑘 = 2) 
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Overview 
 

Symmetric Submodular Functions 

Hypergraph 
Cut Capacity 

Nonnegative 

[Fujishige, Patkar  2001] 

Undirected Graph 
Cut Capacity 

Nonnegative 

LARGE gap 
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𝑓 ∅ = 0, Order ≤ 2 



𝑓: 2𝑉 → 𝐑, symmetric, submodular 

𝑓 is realizable as the cut capacity function 
of a nonnegative hypernetwork. 

 

𝑓 ∅ = 0.  

   

∃ Counterexample with 𝑉 = 4 for  

Realizability by Hypergraph 

(∀𝐸 ∈ E , 𝑐 𝐸 ≥ 0) 

25 
Still LARGE Gap!! 



𝑓: 2𝑉 → 𝐑, symmetric, submodular 

𝑓 is realizable as the cut capacity function 
of a nonnegative hypernetwork. 

 

𝑓 ∅ = 0, 

the even-order terms of 𝑓 are nonpositive, 
the odd-order terms of 𝑓 are nonnegative. 

[Y.  2015] 

   

∃ Counterexample with 𝑉 = 5 for  

Realizability by Hypergraph 

(∀𝐸 ∈ E , 𝑐 𝐸 ≥ 0) 
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NEW! 

Still LARGE Gap!! 



Put nonnegativity aside ... 
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Redundancy of Hypergraph Realization 

 
F ≔ 𝑓 ∈ 𝐑2𝑉 𝑓 ∅ = 0,　𝑓 𝑋 = 𝑓 𝑉 ∖ 𝑋   ∀𝑋 ⊆ 𝑉  

N = H = 𝑉, E , 𝑐 : hypernetwork   𝑐 ∈ 𝐑E  

  

dimF = 2 𝑉 −1 − 1 , dim𝐑E = E ≤ 2 𝑉   

(Reminder) Corollary of [Grishuhin  1989] 

28 

𝑓: 2𝑉 → 𝐑, symmetric 

𝑓 is realizable as the cut cap. func. of a hypernetwork. 
 

𝑓 ∅ = 0.  

 



F ≔ 𝑓 ∈ 𝐑2𝑉 𝑓 ∅ = 0,　𝑓 𝑋 = 𝑓 𝑉 ∖ 𝑋   ∀𝑋 ⊆ 𝑉  

N = H = 𝑉, E , 𝑐 : hypernetwork  
  

dimF = 2 𝑉 −1 − 1 = E = dim𝐑E   
 

The linear mapping 𝑐 ↦ 𝜅N   𝐑
E → F  can be bijective. 

The cut capacity function 𝜅N : 2
𝑉 → 𝐑 

𝜅N 𝑋 ≔  𝑐 𝐸 𝐸 ∩ 𝑋 ≠ ∅ ≠ 𝐸 ∖ 𝑋

𝐸∈E

 

Non-Redundant Hypergraphs? 

 

(Reminder) 29 



F ≔ 𝑓 ∈ 𝐑2𝑉 𝑓 ∅ = 0,　𝑓 𝑋 = 𝑓 𝑉 ∖ 𝑋   ∀𝑋 ⊆ 𝑉  

N = H = 𝑉, E , 𝑐 : hypernetwork 

𝑟 ∈ 𝑉,  E =  𝑋 ∣ 𝑟 ∈ 𝑋 ⊆ 𝑉, 𝑋 ≥ 2   
  

dimF = 2 𝑉 −1 − 1 = E = dim𝐑E   

Standard Form 1  (Rooted) 

𝑋 ∈ E  ⇔   ∅ ≠ ∃𝑍 ⊆ 𝑉 − 𝑟  s.t.  𝑋 = 𝑍 + 𝑟  

 # choices of 𝑍  = 2 𝑉−𝑟 − 1 

∵ 
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F ≔ 𝑓 ∈ 𝐑2𝑉 𝑓 ∅ = 0,　𝑓 𝑋 = 𝑓 𝑉 ∖ 𝑋   ∀𝑋 ⊆ 𝑉  

N = H = 𝑉, E , 𝑐 : hypernetwork 

𝑟 ∈ 𝑉,  E =  𝑋 ∣ 𝑟 ∈ 𝑋 ⊆ 𝑉, 𝑋 ≥ 2   
  

dimF = 2 𝑉 −1 − 1 = E = dim𝐑E   

Standard Form 1  (Rooted) 

 
𝑟 ∈ 𝑉,  E =  𝑋 ∣ 𝑟 ∈ 𝑋 ⊆ 𝑉, 𝑋 ≥ 2   

 

The linear mapping 𝑐 ↦ 𝜅N   𝐑
E → F  is bijective. 

 

[Y.  2015] 
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F ≔ 𝑓 ∈ 𝐑2𝑉 𝑓 ∅ = 0,　𝑓 𝑋 = 𝑓 𝑉 ∖ 𝑋   ∀𝑋 ⊆ 𝑉  

N = H = 𝑉, E , 𝑐 : hypernetwork 

𝑉 ≠ ∅, E =  𝑋 ∣ ∅ ≠ 𝑋 ⊆ 𝑉, 𝑋 : even   

  

dimF = 2 𝑉 −1 − 1 = E = dim𝐑E   

2 𝑉 = 1 + 1 𝑉 + 1 − 1 |𝑉| =  1+ −1 𝑋

𝑋⊆𝑉

 

= 2 𝑋 ⊆ 𝑉 𝑋 : even = 2 E + 1  

∵ 
 

Standard Form 2  (Even-size) 
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F ≔ 𝑓 ∈ 𝐑2𝑉 𝑓 ∅ = 0,　𝑓 𝑋 = 𝑓 𝑉 ∖ 𝑋   ∀𝑋 ⊆ 𝑉  

N = H = 𝑉, E , 𝑐 : hypernetwork 

𝑉 ≠ ∅, E =  𝑋 ∣ ∅ ≠ 𝑋 ⊆ 𝑉, 𝑋 : even   

  

dimF = 2 𝑉 −1 − 1 = E = dim𝐑E   

 

Standard Form 2  (Even-size) 

𝑉 ≠ ∅, E =  𝑋 ∣ ∅ ≠ 𝑋 ⊆ 𝑉, 𝑋 : even   

 

The linear mapping 𝑐 ↦ 𝜅N   𝐑
E → F  is bijective. 

 

Alternative Proof by [Y.  2015] [Grishuhin  1989] 
33 



F ≔ 𝑓 ∈ 𝐑2𝑉 𝑓 ∅ = 0,　𝑓 𝑋 = 𝑓 𝑉 ∖ 𝑋   ∀𝑋 ⊆ 𝑉  

N = H = 𝑉, E ∖ 𝐸 , 𝑐 : hypernetwork 

𝑉 : odd,  E =  𝑋 ⊆ 𝑉 ∣ 𝑉
2
≤ 𝑋 ≤ 𝑉  ,  𝐸 ∈ E   

  

dimF = 2 𝑉 −1 − 1 = E − 1 = dim𝐑E∖ 𝐸   

𝑋 ⊆ 𝑉, 𝑋 ∈ E   ⇔   𝑉 ∖ 𝑋 ∈ E  / 
∵ 

 

Standard Form 3  (Majority) 
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F ≔ 𝑓 ∈ 𝐑2𝑉 𝑓 ∅ = 0,　𝑓 𝑋 = 𝑓 𝑉 ∖ 𝑋   ∀𝑋 ⊆ 𝑉  

N = H = 𝑉, E ∖ 𝐸 , 𝑐 : hypernetwork 

𝑉 : odd,  E =  𝑋 ⊆ 𝑉 ∣ 𝑉
2
≤ 𝑋 ≤ 𝑉  ,  𝐸 ∈ E   

  

dimF = 2 𝑉 −1 − 1 = E − 1 = dim𝐑E∖ 𝐸   
 

Standard Form 3  (Majority) 

𝑉 : odd,  E =  𝑋 ⊆ 𝑉 ∣ 𝑉
2
≤ 𝑋 ≤ 𝑉  ,  𝐸 ∈ E   

 
The linear mapping 𝑐 ↦ 𝜅N   𝐑

E∖ 𝐸 → F  is bijective. 

 

[Y.  2015] 35 



How to see the correctness? 
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F ≔ 𝑓 ∈ 𝐑2𝑉 𝑓 ∅ = 0,　𝑓 𝑋 = 𝑓 𝑉 ∖ 𝑋   ∀𝑋 ⊆ 𝑉  

N = H = 𝑉, E , 𝑐 : hypernetwork 

𝑟 ∈ 𝑉,  E =  𝑋 ∣ 𝑟 ∈ 𝑋 ⊆ 𝑉, 𝑋 ≥ 2   
  

dimF = 2 𝑉 −1 − 1 = E = dim𝐑E   

Rooted Standard Forms  (Reminder) 

 
𝑟 ∈ 𝑉,  E =  𝑋 ∣ 𝑟 ∈ 𝑋 ⊆ 𝑉, 𝑋 ≥ 2   

 

The linear mapping 𝑐 ↦ 𝜅N   𝐑
E → F  is bijective. 

 

[Y.  2015] 
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𝜅N 𝑟

𝜅N 𝑟, 𝑣1  

𝜅N 𝑟, 𝑣2
⋮

𝜅N 𝑟, 𝑣1, 𝑣2
⋮

𝜅N 𝑉 − 𝑣1

=

1 1 1 1 1
1 0 1 ⋯ 1 ⋯ 1
1 1 0 1 1
⋮ ⋱ ⋮

1 0 0 ⋯ 0 ⋯ 1
⋮ ⋱ ⋮

1 1 0 ⋯ 1 ⋯ 0

𝑐 𝑉

𝑐 𝑟, 𝑣1  

𝑐 𝑟, 𝑣2
⋮

𝑐 𝑟, 𝑣1, 𝑣2
⋮

𝑐 𝑉 − 𝑣1

 

𝑟 ∈ 𝑉,  E =  𝑋 ∣ 𝑟 ∈ 𝑋 ⊆ 𝑉, 𝑋 ≥ 2   
 

The linear mapping 𝑐 ↦ 𝜅N   𝐑
E → F  is bijective. 

 

[Y.  2015] 

Correctness of Rooted Standard Forms 
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𝜅N 𝑟
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⋮
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⋮

𝜅N 𝑉 − 𝑣1

=

1 1 1 1 1
1 0 1 ⋯ 1 ⋯ 1
1 1 0 1 1
⋮ ⋱ ⋮

1 0 0 ⋯ 0 ⋯ 1
⋮ ⋱ ⋮

1 1 0 ⋯ 1 ⋯ 0

𝑐 𝑉

𝑐 𝑟, 𝑣1  

𝑐 𝑟, 𝑣2
⋮

𝑐 𝑟, 𝑣1, 𝑣2
⋮

𝑐 𝑉 − 𝑣1

 

𝑟 ∈ 𝑉,  E =  𝑋 ∣ 𝑟 ∈ 𝑋 ⊆ 𝑉, 𝑋 ≥ 2   
 

The linear mapping 𝑐 ↦ 𝜅N   𝐑
E → F  is bijective. 

 

[Y.  2015] 

Correctness of Rooted Standard Forms 
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𝜅N 𝑟

𝜅N 𝑟, 𝑣1  

𝜅N 𝑟, 𝑣2
⋮

𝜅N 𝑟, 𝑣1, 𝑣2
⋮

𝜅N 𝑉 − 𝑣1

=

1 1 1 1 1
1 0 1 ⋯ 1 ⋯ 1
1 1 0 1 1
⋮ ⋱ ⋮

1 0 0 ⋯ 0 ⋯ 1
⋮ ⋱ ⋮

1 1 0 ⋯ 1 ⋯ 0

𝑐 𝑉

𝑐 𝑟, 𝑣1  

𝑐 𝑟, 𝑣2
⋮

𝑐 𝑟, 𝑣1, 𝑣2
⋮

𝑐 𝑉 − 𝑣1

 

Correctness of Rooted Standard Forms 

𝑟 
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𝜅N 𝑟

𝜅N 𝑟, 𝑣1  

𝜅N 𝑟, 𝑣2
⋮

𝜅N 𝑟, 𝑣1, 𝑣2
⋮

𝜅N 𝑉 − 𝑣1

=

1 1 1 1 1
1 0 1 ⋯ 1 ⋯ 1
1 1 0 1 1
⋮ ⋱ ⋮

1 0 0 ⋯ 0 ⋯ 1
⋮ ⋱ ⋮

1 1 0 ⋯ 1 ⋯ 0

𝑐 𝑉

𝑐 𝑟, 𝑣1  

𝑐 𝑟, 𝑣2
⋮

𝑐 𝑟, 𝑣1, 𝑣2
⋮

𝑐 𝑉 − 𝑣1

 

Correctness of Rooted Standard Forms 

𝑟 

𝑣1 
41 



𝜅N 𝑟

𝜅N 𝑟, 𝑣1  

𝜅N 𝑟, 𝑣2
⋮

𝜅N 𝑟, 𝑣1, 𝑣2
⋮

𝜅N 𝑉 − 𝑣1

=

1 1 1 1 1
1 0 1 ⋯ 1 ⋯ 1
1 1 0 1 1
⋮ ⋱ ⋮

1 0 0 ⋯ 0 ⋯ 1
⋮ ⋱ ⋮

1 1 0 ⋯ 1 ⋯ 0

𝑐 𝑉

𝑐 𝑟, 𝑣1  

𝑐 𝑟, 𝑣2
⋮

𝑐 𝑟, 𝑣1, 𝑣2
⋮

𝑐 𝑉 − 𝑣1

 

Correctness of Rooted Standard Forms 

𝑟 

𝑣1 𝑣2 
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𝜅N 𝑟

𝜅N 𝑟, 𝑣1  

𝜅N 𝑟, 𝑣2
⋮

𝜅N 𝑟, 𝑣1, 𝑣2
⋮

𝜅N 𝑉 − 𝑣1

=

1 1 1 1 1
1 0 1 ⋯ 1 ⋯ 1
1 1 0 1 1
⋮ ⋱ ⋮

1 0 0 ⋯ 0 ⋯ 1
⋮ ⋱ ⋮

1 1 0 ⋯ 1 ⋯ 0

𝑐 𝑉

𝑐 𝑟, 𝑣1  

𝑐 𝑟, 𝑣2
⋮

𝑐 𝑟, 𝑣1, 𝑣2
⋮

𝑐 𝑉 − 𝑣1

 

Correctness of Rooted Standard Forms 

43 

1 

1 

1 0 

∗ 



𝜅N 𝑟

𝜅N 𝑟, 𝑣1  

𝜅N 𝑟, 𝑣2
⋮

𝜅N 𝑟, 𝑣1, 𝑣2
⋮

𝜅N 𝑉 − 𝑣1

=

1 1 1 1 1
1 0 1 ⋯ 1 ⋯ 1
1 1 0 1 1
⋮ ⋱ ⋮

1 0 0 ⋯ 0 ⋯ 1
⋮ ⋱ ⋮

1 1 0 ⋯ 1 ⋯ 0

𝑐 𝑉

𝑐 𝑟, 𝑣1  

𝑐 𝑟, 𝑣2
⋮

𝑐 𝑟, 𝑣1, 𝑣2
⋮

𝑐 𝑉 − 𝑣1

 

Correctness of Rooted Standard Forms 

44 

1 

1 

1 0 

∗ 

−1 



𝜅N 𝑟

𝜅N 𝑟, 𝑣1  

𝜅N 𝑟, 𝑣2
⋮

𝜅N 𝑟, 𝑣1, 𝑣2
⋮

𝜅N 𝑉 − 𝑣1

=

1 1 1 1 1
1 0 1 ⋯ 1 ⋯ 1
1 1 0 1 1
⋮ ⋱ ⋮

1 0 0 ⋯ 0 ⋯ 1
⋮ ⋱ ⋮

1 1 0 ⋯ 1 ⋯ 0

𝑐 𝑉

𝑐 𝑟, 𝑣1  

𝑐 𝑟, 𝑣2
⋮

𝑐 𝑟, 𝑣1, 𝑣2
⋮

𝑐 𝑉 − 𝑣1

 

Correctness of Rooted Standard Forms 

45 

0 

1 

0 −1 

∗ 

Nonsingular 



F ≔ 𝑓 ∈ 𝐑2𝑉 𝑓 ∅ = 0,　𝑓 𝑋 = 𝑓 𝑉 ∖ 𝑋   ∀𝑋 ⊆ 𝑉  

N = H = 𝑉, E , 𝑐 : hypernetwork 

𝑉 ≠ ∅, E =  𝑋 ∣ ∅ ≠ 𝑋 ⊆ 𝑉, 𝑋 : even   

  

dimF = 2 𝑉 −1 − 1 = E = dim𝐑E   

 

Even Standard Forms  (Reminder) 

𝑉 ≠ ∅, E =  𝑋 ∣ ∅ ≠ 𝑋 ⊆ 𝑉, 𝑋 : even   

 

The linear mapping 𝑐 ↦ 𝜅N   𝐑
E → F  is bijective. 

 

Alternative Proof by [Y.  2015] [Grishuhin  1989] 
46 



For 𝑘 ∈ 𝐙>0, any hyperedge of size 2𝑘 + 1 

can be replaced by ones of size 2, 4, … , 2𝑘. 

→ 

𝑐 = 4 

𝑐 = 2 

𝑐 = −1 

× 5
4

  

[Y.  2015] 

× 5
2

  

Odd-size Hyperedges 

ex. 𝑘 = 2 

47 



For 𝑘 ∈ 𝐙>0, any hyperedge of size 2𝑘 + 1 

can be replaced by ones of size 2, 4, … , 2𝑘. 

[Y.  2015] 

Odd-size Hyperedges 

→ 

𝑐 = 4 

𝑐 = 2 

𝑐 = −1 

× 4
3

  

𝜅N = 4 𝜅N = 4 

× 4
1
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For 𝑘 ∈ 𝐙>0, any hyperedge of size 2𝑘 + 1 

can be replaced by ones of size 2, 4, … , 2𝑘. 

[Y.  2015] 

Odd-size Hyperedges 

→ 

𝑐 = 4 

𝑐 = 2 

𝑐 = −1 

× 5
4

  

𝜅N = 4 𝜅N = 4 

× 2
1
3
1
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Conclusion 

• Any symmetric real-valued set function 𝑓 with 𝑓 ∅ = 0 

can be realized as cut capacity of a hypergraph. 

(Extends the case of undirected graphs [Fujishige, Patkar  2001]) 

• We give three types of hyperedge sets 

consisting bases for cut realization as standard forms. 

(with a fixed root, even-size, majorities without any one) 

• For the case when the capacity function is nonnegative, 

sufficient conditions are still OPEN ... 

[Grishuhin  1989] 
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Properties of Cut Capacity Functions 

N = H = 𝑉, E , 𝑐 : hypernetwork 

• 𝜅N  is symmetric, i.e., 

𝜅N 𝑋 = 𝜅N 𝑉 ∖ 𝑋    𝑋 ⊆ 𝑉  

• 𝑐: E → 𝐑 is nonnegative  (∀𝐸 ∈ E , 𝑐 𝐸 ≥ 0) 
⇒  𝜅N  is submodular, i.e., 

𝜅N 𝑋 + 𝜅N 𝑌 ≥ 𝜅N 𝑋 ∪ 𝑌 + 𝜅N 𝑋 ∩ 𝑌  
𝑋, 𝑌 ⊆ 𝑉  

 
52 



From the Viewpoint of Minimization 

𝑓: 2𝑉 → 𝐑, symmetric and submodular 

𝑋∗ ∈ argmin
𝑋:∅≠𝑋⊂𝑉

𝑓 𝑋  

can be found in O 𝑉 3EO  time (EO: eval. cost of 𝑓) 

 [Queyranne  1998] 

• Generalizes minimum-cut algorithms for 
– undirected graphs [Nagamochi, Ibaraki  1992] and 
– hypergraphs [Klimmek, Wagner  1996]. 

• Solved by repeated general submodular minimizations, 
requiring O 𝑉 5EO + 𝑉 6  time per once [Orlin  2009]. 
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From the Viewpoint of Minimization 

𝑓: 2𝑉 → 𝐑, symmetric and submodular 

𝑋∗ ∈ argmin
𝑋:∅≠𝑋⊂𝑉

𝑓 𝑋  

can be found in O 𝑉 3EO  time (EO: eval. cost of 𝑓) 

 

• Generalizes minimum-cut algorithms for 
– undirected graphs [Nagamochi, Ibaraki  1992] and 
– hypergraphs [Klimmek, Wagner  1996]. 

→ How close the set of cut capacity functions is 
to the set of symmetric submodular functions? 

[Queyranne  1998] 
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Order of Set Function 
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∀𝑓: 2𝑉 → 𝐑,  ∃! 𝐹 ∈ 𝐑 𝑥𝑣 ∣ 𝑣 ∈ 𝑉 : polynomial  s.t. 

𝐹 𝟏𝑋 = 𝑓 𝑋                  𝑋 ⊆ 𝑉 , and 

𝐹 𝑥 =  𝑎𝑋 𝑥𝑣
𝑣∈𝑋𝑋⊆𝑉

  𝑥 = 𝑥𝑣 𝑣 ∈ 𝑉  

(cf. Möbius Inversion Formula) 

• The order of 𝑓 ≔ deg𝐹 = max
𝑋⊆𝑉
𝑋 ∣ 𝑎𝑋 ≠ 0 . 

• 𝑎𝑋: 𝑋 -th order term 



Odd(Even)-Order Terms of Cut Cap. 

N = H = 𝑉, E , 𝑐 : hypernetwork 

𝑎𝑋 =

 𝑐 𝐸 𝑋 ⊂ 𝐸

𝐸∈E

− 2𝑐 𝑋 + 𝑐 𝐸 𝑋 ⊂ 𝐸

𝐸∈E
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𝑋 : odd  

𝑋 : even  

𝐹 𝟏𝑋 = 𝜅N 𝑋              𝑋 ⊆ 𝑉 , and 

𝐹 𝑥 =  𝑎𝑋 𝑥𝑣
𝑣∈𝑋𝑋⊆𝑉

  𝑥 = 𝑥𝑣 𝑣 ∈ 𝑉  

[Y.  2015] 
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