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A-paths and S-paths

G = (V,E): Undirected Graph
A € V:Terminal Set

S=1{A4,A4A,, ..., A;}: Partition of A

S-path
A

O€EA
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Mader’s Disjoint S-paths Problem

Given G = (V,E): Undirected Graph
A € V: Terminal Set, §: Partition of A4
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Mader’s Disjoint S-paths Problem

Find Maximum Number of
Fully Vertex-Disjoint S-paths

* Min-Max Duality

* Polytime via Matroid Matching
— Linear Representation
- O(|V|®)-time Algorithm via Linear Matroid Parity

(w < 2.373)
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Given

Packing Non-zero A-paths

G = (V,E): Group-Labeled Graph
A € V: Terminal Set Z-Labeled Graph
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Packing Non-zero A-paths
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Packing Non-zero A-paths
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Given

S-path

Ex. 1 Mader’s S-paths

G = (V,E): Undirected Graph
A € V: Terminal Set, §: Partition of A4
A

NOT S-path

Maximum Number of
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Find

Ex. 1 Mader’s S-paths

G = (V,E): Group-Labeled Graph
A € V: Terminal Set Z-Labeled Graph
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O
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Given

Ex. 1 Mader’s S-paths

G = (V,E): Group-Labeled Graph
A € V: Terminal Set Z-Labeled Graph
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Ex. 1 Mader’s S-paths

Given G = (V,E): Group-Labeled Graph
A C V: Terminal Set Z-Labeled Graph
4,

Z=1{0+1,42, ..}
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Ex. 1 Mader’s S-paths

G = (V,E): Group-Labeled Graph
A € V: Terminal Set Z-Labeled Graph
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Ex. 1 Mader’s S-paths

Given G = (V,E): Group-Labeled Graph
A € V: Terminal Set Z-Labeled Graph
AZ ::.“--.u.‘: 2 Z — {0’ ily iz’ }
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Ex. 2 Odd-Length A-paths

Given G = (V,E): Group-Labeled Graph
A C V: Terminal Set Z,-Labeled Graph
1 Z, = {0,1} (mod 2)

Find Maximum Number of
Fully Vertex-Disjoint Non-zero A-paths
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Ex. 2 Odd-Length A-paths

Given G = (V,E): Group-Labeled Graph
A C V: Terminal Set Z,-Labeled Graph
Z, ={0,1} (mod 2)

Odd-Length

Find Maximum Number of 2
Fully Vertex-Disjoint Non-zero A-paths
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Packing Non-zero A-paths

Find Maximum Number of Fully Vertex-Disjoint

Non-zero A-paths

* Min-Max Duality

« O(|V|?)-time Algorithm
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Packing Non-zero A-paths

Find Maximum Number of Fully Vertex-Disjoint

Non-zero A-paths

* Min-Max Duality

e O(|V|?)-time Algorithm

— Improvable??
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Linear Matroid Parity Problem

Given Z € F™2™. Matrix with Pairing of Columns

1 0 0 0 0 0 0 O
01 0 0 0 0 0 O
0O 01 0 0 0 0 O
o 0 01 0 0 0 O
0O 0 0 01 0 0 2
0O 0 00 0 1 0 1
_p Ol lO Ol p Ol I1 ]1_

Find Maximum Number of
Linearly Independent Column-Pairs



Linear Matroid Parity Problem

Given Z € F™2™. Matrix with Pairing of Columns

Full Rank
(rank = 6)

o O O O O
=N O O O

"

Find Maximum Number of
Linearly Independent Column-Pairs
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Linear Matroid Parity Problem

Given Z € F™2™. Matrix with Pairing of Columns

1 0 0 0/0 0 0 O
01 0 00 0 0 O
0 01 000 0 O
0 00 1,00 0 0
000 0/1 0 0 2
000 00 1 0 1
0 00 0/0 0 1 1

Find Maximum Number of
Linearly Independent Column-Pairs




Linear Matroid Parity Problem

Find Maximum Number of

Linearly Independent Column-Pairs

n-Dim.

* Min-Max Duality

* Polytime Solvable
o(m'7)? (First Polytime)
O(mn?®) (Deterministic)
O(mn®~1) (Randomized)

Full Rank

| m— ) — —
m Pairs

(w < 2.373: Matrix Multiplication Exponent)
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Reduction Flow
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Reduction Flow
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Associated Matrix

e We want a Subgraph

—
O\/\)

<
Reconstruct

Full Rank

| m— ) m— ) m—
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Associated Matrix

e We want a Subgraph

O\o
O\/\)

— Edge < Column-Pair

<€ Full Rank
Reconstruct
 —
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Associated Matrix

* We want a Subgraph — Edge < Column-Pair

< Full Rank
o\/\) Reconstruct
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Associated Matrix

* We want a Subgraph — Edge < Column-Pair

< Full Rank
o\/\) Reconstruct
—J

* We want Easy Reconstruction

Unique
\: '\‘ and < Full Rank
Non-zero
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Sufficient Condition

C I': Group, F: Field, p: " - GL(2,F) Homomorphic A

\_

s.t. p(a)((l)) | ((1)) & a= 1
U
JAssociated Matrix

J

GL(2, F): Set of All Nonsingular 2 X 2 Matrices over F

Unique
\: '\‘ and < Full Rank
Non-zero
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Sufficient Condition

-

&

I': Group, F: Field, p: " - GL(2,F) Homomorphic

s.t.[p(a)((l)) | ((1)) & a = 11~]
U
JAssociated Matrix

~

J

GL(2, F): Set of All Nonsingular 2 X 2 Matrices over F

a € I'\ {1r}

lo(afyY
= o
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Intuitive ldea

I': Group, F:Field, p:I" - GL(2,F) Homomorphic
s.t. p(a)((l)) | (é) & a=1

e Terminals in A are associated with ((1))

e Edges carry vectors with acting

(1)© ®

0

NG
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Intuitive ldea

I': Group, F:Field, p:I" - GL(2,F) Homomorphic
s.t. p(a)((l)) | (é) & a=1

e Terminals in A are associated with ((1))

e Edges carry vectors with acting

1

o
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Intuitive ldea

[: Group, F:Field, p:T - GL(2, F)| Homomorphic |
s.t. p(a)((l)) | ((1)) & a=1

e Terminals in A are associated with ((1))

e Edges carry vectors with acting

NG
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Intuitive ldea

I': Group, F:Field, p:I" - GL(2,F) Homomorphic
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e Terminals in A are associated with ((1))

e Edges carry vectors with acting



Intuitive ldea

I': Group, F:Field, p:T - GL(2,F) Homomorphic

s.t.[p(a)((l)) | ((1)) S a= 11~]

Pl wa)() H(})




Matrix Construction (Step 1)

I': Group, F:Field, p:I" - GL(2,F) Homomorphic
s.t. p(a)((l)) | (é) & a=1

e Based on the Incidence Matrix

e
1%
I 0
® |
e 0
O (S
0
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Matrix Construction (Step 1)

I': Group, F:Field, p:I" - GL(2,F) Homomorphic
s.t. p(a)((l)) | (é) & a=1

 Based on the Incidence Matrix
* Replace +1 with [, and —p(«)

e e
v .
® |- L S LA S
3 R Ul i I &
e | 0. - 0 i
O R P et S v izpl@)
0 L0
Paired
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Matrix Construction (Step 2)

I': Group, F:Field, p:I" - GL(2,F) Homomorphic
s.t. p(a)((l)) | (é) & a=1

cQi={xeF) |x, I(;) wWeA, x,=0 (ve&A)}
* Linear Independence in

e u
v O e
(o) e o |
O B A GO N R A
u€EA g
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Matrix Construction (Step 2)

I': Group, F:Field, p:I" - GL(2,F) Homomorphic
s.t. p(a)((l)) | (é) & a=1

cQi={xeF) |x, I(;) wWeA, x,=0 (ve&A)}
* Linear Independence in

e u
v O e
(o) e o |
O B A GO N R A
u€EA g

Eliminate in advance & .



Ex. 1 Mader's S-paths

I': Group, F:Field, p:T - GL(2,F) Homomorphic
s.t. p(a)((l)) | (é) & a=1

C T=7={0,+1,42, ..} A
\_ Y,
i j :
A ‘\@Aj S-paths
0 0
¥ Non-zero
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Ex. 1 Mader's S-paths

I': Group, F:Field, p:I" - GL(2,F) Homomorphic

s.t. p(a)((l)) | ((1)) & a=1

/

'=7Z={0,+1,+2,...}, F = Q: Rational Field A
ptr=[, || e
p()() = () 1) = k=0 )

l ] -
Ai A] S paths
0 0
¥ Non-zero
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Ex. 2 Odd-Length A-paths

I': Group, F:Field, p:I" - GL(2,F) Homomorphic
s.t. p(a)((l)) | ((1)) & a=1

[ r=1,=1{0,1} (mod?2) A
N J
1
1 Odd-Length
= 1 \ 2
Non-zero
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Ex. 2 Odd-Length A-paths

I': Group, F:Field, p:I" - GL(2,F) Homomorphic
s.t. p(a)((l)) | ((1)) & a=1

( T'=1%,=1{0,1} (mod?2), F:Arbitrary Field

p@=[; . p=[]

_ r@Q =G POE=Dr0E

1
1 Odd-Length
___— 1 \ 0

Non-zero
56
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Sufficient Condition

-

\_

I': Group, F: Field, p: " - GL(2,F) Homomorphic
s.t. p(a)((l)) | ((1)) & a= 1
U
Reducible to Linear Matroid Parity

~

J

GL(2,F): Set of All Nonsingular 2 X 2 Matrices over F
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Sufficient Condition

-

\_

I': Group, F: Field, p: " - PGL(2,F) Homomorphic
s.t. p(a)((l)) | (é) & a= 1
U
Reducible to Linear Matroid Parity

~

J

GL(2,F): Set of All Nonsingular 2 X 2 Matrices over F
. k O
PGL(2, F) := GL(2,F)/{ ; k] ke F\{0}]

vZ € GL(2,F),Vk e F\ {0}, Z ~kZ
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Necessary and Sufficient Condition

C I': Group, F: Field, p:T = PGL(2,F) Homomorphic A

s.t. p(a)((l)) | ((1)) & a= 1
)

Reducible to L.M.P. with Coherent Representation y

\_
e =uv eE
-0 = Full Rank
S S Non-zero
wil i*x:
104
v| T O
0
o x: 2 X 2 Matrix O



Conclusion

* Packing Non-zero A-paths
is efficiently solvable via Linear Matroid Parity

under some Group Representability condition.

O(|V]>)-time > O(|V|?373)-time

* The same condition is also Necessary

for Reasonable Reduction to L.M.P.
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Extension

Our Result is Extendable to the following cases

e Subgroup-Forbidden Model

I'": Proper Subgroup of I', Set of Forbidden Labels

Idea p(a)(p) Il () & =T a €T’

 Weighted Setting — Weighted Linear Matroid Parity
c:E - R (Edge Cost), k€ Z,
Finding Minimum Cost k Disjoint Non-zero A-paths

Idea Add Dummy Terminals (cf. Weighted Matching)
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