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Linear Matroid Parity Problem 
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Linear Matroid Parity Problem 

Find Maximum Number of  
Linearly Independent Column-Pairs 

• Min-Max Duality 

•  Polytime Solvable 

O 𝑚17 ? 

O 𝑚𝑛𝜔   

O 𝑚𝑛𝜔−1   

(𝜔 < 2.373: Matrix Multiplication Exponent) 

[Lovász  1980] 

[Lovász  1981] 

[Gabow, Stallmann  1986] 

[Cheung, Law, Leung  2014] 
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Associated Matrix 
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• We want Easy Reconstruction 

Associated Matrix 

??? 
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• We want Easy Reconstruction 

Associated Matrix 

• We want a Subgraph     →     Edge  ↔  Column-Pair 

Reconstruct 
 Full Rank 

Full Rank ⟺ 
Unique 

and 
Non-zero 
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∃Associated Matrix 

Full Rank ⟺ 

 

GL 2, 𝐅 : Set of All Nonsingular 2 × 2 Matrices over 𝐅 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 

Unique 
and 

Non-zero 
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∃Associated Matrix 

 

GL 2, 𝐅 : Set of All Nonsingular 2 × 2 Matrices over 𝐅 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 

1
0

  

𝜌 𝛼 1
0

  

𝛼 ∈ Γ ∖ 1Γ  ⟹ 
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• Terminals in 𝐴 are associated with 1
0

 

• Edges carry vectors with acting 

𝛼1 
𝛼2 𝛼𝑘 

1
0

  

1
0

  

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 
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s.t.  𝜌 𝛼 1
0

∥ 1
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• Terminals in 𝐴 are associated with 1
0

 

• Edges carry vectors with acting 

𝜌 𝛼2 𝜌 𝛼1
1
0

  

1
0

  
𝛼1 

𝛼2 𝛼𝑘 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 



Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 

Intuitive Idea 
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• Terminals in 𝐴 are associated with 1
0

 

• Edges carry vectors with acting 

𝜌 𝛼2𝛼1
1
0

  

1
0

  
𝛼1 

𝛼2 𝛼𝑘 
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• Terminals in 𝐴 are associated with 1
0

 

• Edges carry vectors with acting 

1
0

  
𝛼1 

𝛼2 𝛼𝑘 

𝜌 𝛼𝑘 ⋯ 𝛼2𝛼1
1
0

  

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 
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1
0

  
𝛼1 

𝛼2 𝛼𝑘 

𝜌 𝛼𝑘 ⋯ 𝛼2𝛼1
1
0

  

𝜌 𝛼𝑘 ⋯ 𝛼2𝛼1
1
0

∦ 1
0

  ⇔  𝛼𝑘 ⋯ 𝛼2𝛼1 ≠ 1Γ  

Linearly Independent Non-zero 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 
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• Based on the Incidence Matrix 

  

𝛼 
𝟎

 1  
𝟎

 −1  
𝟎

 

𝑣 

𝑢 

𝑣 

𝑒 

𝑒 

𝑢 ∈ 𝐴 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 



Matrix Construction  (Step 1) 
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• Based on the Incidence Matrix 

• Replace ±1 with 𝐼2 and −𝜌 𝛼  

𝛼 
𝟎

 1  
𝟎

 −1  
𝟎

 

𝑣 𝑂
 𝐼2  

𝑂
 −𝜌 𝛼  

𝑂

 
𝑢 

𝑣 

𝑢 

𝑣 
→ 

Paired 

𝑒 𝑒 

𝑒 

𝑢 ∈ 𝐴 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 



Matrix Construction  (Step 2) 
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• 𝑄 ≔ 𝑥 ∈ 𝐅2 𝑉 𝑥𝑢 ∥ 1
0

  𝑢 ∈ 𝐴 , 𝑥𝑣 = 𝟎  𝑣 ∉ 𝐴  

• Linear Independence in 𝐅2 𝑉/𝑄 

𝛼 

𝑣 𝑂 𝟎
 𝐼2  

𝑂 ⋮
 −𝜌 𝛼  𝟎

𝑂 ⋮

 
𝑢 

𝑣 

𝑢 ∈ 𝐴 

𝑒 

𝑒 

1
0
  

Begin with 
Basis of 𝑄 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 

𝑢 

1
0

  



Matrix Construction  (Step 2) 
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• 𝑄 ≔ 𝑥 ∈ 𝐅2 𝑉 𝑥𝑢 ∥ 1
0

  𝑢 ∈ 𝐴 , 𝑥𝑣 = 𝟎  𝑣 ∉ 𝐴  

• Linear Independence in 𝐅2 𝑉/𝑄 

𝛼 

𝑣 

𝑢 

𝑣 

𝑢 ∈ 𝐴 

𝑒 

𝑒 
Begin with 
Basis of 𝑄 

Eliminate in advance 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 

𝑂 𝟎
 𝐼2  

𝑂 ⋮
 −𝜌 𝛼  𝟎

𝑂 ⋮

 

1
0
  

𝑢 

1
0

  



Ex. 1  Mader's S-paths 
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Γ = 𝐙 = 0, ±1, ±2, …

𝐴𝑖  
−𝑖 

𝑖 

−𝑗 

𝑗 

0 0 
𝐴𝑗  

S-paths 

Non-zero 

 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 



Ex. 1  Mader's S-paths 
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Γ = 𝐙 = 0, ±1, ±2, … ,  𝐅 = 𝐐: Rational Field 

𝜌 𝑘 =
1 0
𝑘 1

          𝑘 ∈ 𝐙  

𝜌 𝑘 1
0

= 1
𝑘

∥ 1
0

  ⇔   𝑘 = 0  

𝐴𝑖  
−𝑖 

𝑖 

−𝑗 

𝑗 

0 0 
𝐴𝑗  

S-paths 

Non-zero 

 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 



Ex. 2  Odd-Length 𝐴-paths 
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Γ = 𝐙2 = 0, 1   mod 2

1 

1 

1 

1 
1 1 

Odd-Length 

Non-zero 

 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 



Ex. 2  Odd-Length 𝐴-paths 
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Γ = 𝐙2 = 0, 1   mod 2 ,  𝐅: Arbitrary Field 

𝜌 0 =
1 0
0 1

, 𝜌 1 =
0 1
1 0

 

𝜌 0 1
0

= 1
0

∥ 1
0

,  𝜌 1 1
0

= 0
1

∦ 1
0

  

1 

1 

1 

1 
1 1 

Odd-Length 

Non-zero 

 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 



Sufficient Condition 
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Reducible to Linear Matroid Parity 

 

GL 2, 𝐅 : Set of All Nonsingular 2 × 2 Matrices over 𝐅 

Γ: Group,  𝐅: Field,  𝜌: Γ → GL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 



Sufficient Condition 
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Reducible to Linear Matroid Parity 

 

GL 2, 𝐅 : Set of All Nonsingular 2 × 2 Matrices over 𝐅 

PGL 2, 𝐅 ≔ GL 2, 𝐅 /  
𝑘 0
0 𝑘

∣ 𝑘 ∈ 𝐅 ∖ 0    

∀𝑍 ∈ GL 2, 𝐅 , ∀𝑘 ∈ 𝐅 ∖ 0 ,    𝑍 ∼ 𝑘𝑍  

Γ: Group,  𝐅: Field,  𝜌: Γ → PGL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 



Necessary and Sufficient Condition 
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Reducible to L.M.P. with Coherent Representation 

 
𝑂

 ∗  
𝑂

 ∗  
𝑂

 
𝑢 

𝑣 

𝑒 = 𝑢𝑣 ∈ 𝐸 

Paired 

Non-zero 

Zero 

⇒  Full Rank 

⇒  NOT Full Rank 

∗: 2 × 2 Matrix 

Γ: Group,  𝐅: Field,  𝜌: Γ → PGL 2, 𝐅   Homomorphic 

s.t.  𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ 



Conclusion 

•  Packing Non-zero 𝑨-paths 

is efficiently solvable via Linear Matroid Parity 

under some Group Representability condition. 

O 𝑉 5 -time                              O 𝑉 2.373 -time 

• The same condition is also Necessary  

for Reasonable Reduction to L.M.P. 
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[Chudnovsky, Cunningham, Geelen  2008] [Cheung, Law, Leung  2014] 



Extension 
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Our Result is Extendable to the following cases 

•  Subgroup-Forbidden Model 

Γ′: Proper Subgroup of Γ,  Set of Forbidden Labels 

Idea    𝜌 𝛼 1
0

∥ 1
0

 ⇔  𝛼 = 1Γ  𝛼 ∈ Γ′ 

•  Weighted Setting  →  Weighted Linear Matroid Parity 

𝑐: 𝐸 → 𝐑   (Edge Cost),   𝑘 ∈ 𝐙+ 

Finding Minimum Cost 𝑘 Disjoint Non-zero 𝐴-paths 

Idea   Add Dummy Terminals (cf. Weighted Matching) 

[Iwata  2013] [Pap  2013] 


